INSTALLER MANUAL

IHB EN 2014-6 331036

Ground source heat pump NIBE F1345

Table of Contents

1	Important information	4
	Safety information	4
	Symbols	4
	Marking	
	Safety precautions	5
	Serial number	6
	Recovery	6
	Environmental information	6
	Inspection of the installation	7
2	Delivery and handling	8
	Transport	8
	Assembly	8
	Supplied components	9
	Removing the covers	10
3	The heat pump design	11
	General	11
	Motor module (AA11)	13
	Cooling sections	14
4	Pipe connections	16
	General	16
	Dimensions and pipe connections	17
	Brine side	18
	Heating medium side	20
	Cold and hot water	20
	Docking alternatives	21
5	Electrical connections	23
	General	23
	Connections	24
	Optional connections	26
	Connecting accessories	34
6	Commissioning and adjusting	35
	Preparations	35
	Filling and venting	35
	Start-up and inspection	36

	Setting the heating curve	40
7	Accessories	42
8	Technical data	45
	Dimensions and setting-out coordinates	45
	Technical specifications	46
	Energy labelling	48
	Electrical circuit diagram	53
lte	em register	64
Сс	ontact information	67

Important information 1

Safety information

This manual describes installation and service procedures for implementation by specialists.

This appliance can be used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved. The product is intended for use by experts or trained users in shops, hotels, light industry, farming and similar environments.

Children must be instructed/supervised to ensure that they do not play with the appliance.

Do not allow children to clean or maintain the appliance unsupervised.

This is an original manual. It may not be translated without the approval of NIBE.

Rights to make any design or technical modifications are reserved. ©NIBE 2020.

Do not start F1345 if there is a risk that the water in the system has frozen.

F1345 must be installed via an isolator switch. The cable area has to be dimensioned based on the fuse rating used.

Symbols

WARNING!

This symbol indicates serious danger to person or machine.

NOTE

This symbol indicates danger to person or machine .

Caution

This symbol indicates important information about what you should consider when installing or servicing the installation.

TIP

This symbol indicates tips on how to facilitate using the product.

Marking

- CE The CE mark is obligatory for most products sold in the EU, regardless of where they are made.
- **IP21** Classification of enclosure of electro-technical equipment.

Danger to person or machine.

Read the operating manual.

Safety precautions

CAUTION

Install the system in full accordance with this installation manual. Incorrect installation can cause bursts, personal injury, water leaks, refrigerant leaks, electric shocks and fire.

Pay attention to the measurement values before working on the cooling system, especially when servicing in small rooms, so that the limit for the refrigerant's concentration is not exceeded.

Consult an expert to interpret the measurement values. If the refrigerant concentration exceeds the limit, there may be a shortage of oxygen in the event of any leak, which can cause serious injury.

Use original accessories and the stated components for the installation.

If parts other than those stated by us are used, water leaks, electric shocks, fire and personal injury may occur as the unit may not work properly.

Ventilate the working area well – refrigerant leakage may occur during service work.

If the refrigerant comes into contact with naked flames, poisonous gas is created.

Install the unit in a location with good support.

Unsuitable installation locations can cause the unit to fall and cause material damage and personal injury. Installation without sufficient support can also cause vibrations and noise.

Ensure that the unit is stable when installed, so that it can withstand earthquakes and strong winds.

Unsuitable installation locations can cause the unit to fall and cause material damage and personal injury.

The electrical installation must be carried out by a qualified electrician and the system must be connected as a separate circuit.

Power supply with insufficient capacity and incorrect function can cause electric shocks and fire.

Use the stated cables for the electrical connection, tighten the cables securely in the terminal blocks and relieve the wiring correctly to prevent overloading the terminal blocks.

Loose connections or cable mountings can cause abnormal heat production or fire.

Check, after completed installation or service, that no refrigerant leaks from the system in gas form.

If refrigerant gas leaks into the house and comes into contact with an aerotemp, an oven or other hot surface, poisonous gases are produced.

Use types of pipe and tools stated for this type of refrigerant.

Using existing parts for other refrigerants can cause breakdowns and serious accidents due to process circuit bursts.

Switch off the compressor before opening/breaching the refrigerant circuit.

If the refrigerant circuit is breached /opened whilst the compressor is running, air can enter the process circuit. This can cause unusually high pressure in the process circuit, which can cause bursts and personal injury.

Switch off the power supply in the event of a service or inspection.

If the power supply is not shut off, there is a risk of electric shocks and damage due to the rotating fan.

Do not run the unit with removed panels or protection.

Touching rotating equipment, hot surfaces or high voltage parts can cause personal injury due to entrapment, burns or electric shocks.

Cut the power before starting electrical work.

Failure to cut the power can cause electric shocks, damage and incorrect function of the equipment.

CARE

Carry out the electrical installation with care.

Do not connect the ground lead to the gas line, water line, lightning conductor or telephone line's ground lead. Incorrect grounding can cause unit faults such as electric shocks due to short-circuiting.

Use main switch with sufficient breaking capacity.

If the switch does not have sufficient breaking capacity, malfunctions and fire can occur.

Always use a fuse with the correct rating in the locations where fuses are to be used.

Connecting the unit with copper wire or other metal thread can cause unit breakdown and fire.

Cables must be routed so that they are not damaged by metal edges or trapped by panels.

Incorrect installation can cause electric shocks, heat generation and fire.

Do not install the unit in close proximity to locations where leakage of combustible gases can occur. If leaking gases collect around the unit, fire may occur.

Do not install the unit where corrosive gas (for example nitrous fumes) or combustible gas or steam (for example thinner and petroleum gases) can build up or collect, or where volatile combustible substances are handled.

Corrosive gas can cause corrosion to the heat exchanger, breaks in plastic parts etc. and combustible gas or steam can cause fire.

Do not use the unit for specialist purposes such as for storing food, cooling precision instruments, freeze-conservation of animals, plants or art.

This can damage the items.

Do not install and use the system close to equipment that generates electromagnetic fields or high frequency harmonics.

Equipment such as inverters, standby sets, medical high frequency equipment and telecommunications equipment can affect the unit and cause malfunctions and breakdowns. The unit can also affect medical equipment and telecommunications equipment, so that it functions incorrectly or not at all.

Take care when carrying the unit by hand.

If the unit weights more than 20 kg, it must be carried by two people. Wear safety gloves to minimise the risk of cuts.

Dispose of any packaging material correctly.

Any remaining packaging material can cause personal injury as it may contain nails and wood.

Do not touch any buttons with wet hands.

This can cause electric shocks.

Do not touch any refrigerant pipes with your hands when the system is in operation.

During operation the pipes become extremely hot or extremely cold, depending on the method of operation. This can cause burn injuries or frost injuries.

Do not shut off the power supply immediately after operation has start.

Wait at least 5 minutes, otherwise there is a risk of water leakage or breakdown.

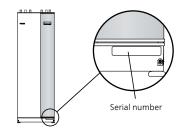
Do not control the system with the main switch.

This can cause fire or water leakage. In addition, the fan can start unexpectedly, which can cause personal injury.

ESPECIALLY FOR UNITS INTENDED FOR R407C AND R410A

- Do not use other refrigerants that those intended for the unit.

- Do not use charging bottles. These types of bottles change the composition of the refrigerant, which makes the performance of the system worse.


- When filling refrigerant, the refrigerant must always leave the bottle in liquid form.

- R410A means that the pressure is about 1.6 times as high as for conventional refrigerants.

- The filling connections on units with R410A are different sizes, to prevent the system being filled with the incorrect refrigerant by mistake.

Serial number

The serial number can be found at the bottom right of the front cover, in the info menu (menu 3.1) and on the type plate (PZ1).

Caution

You need the product's (14 digit) serial number for servicing and support.

Recovery

Leave the disposal of the packaging to the installer who installed the product or to special waste stations.

Do not dispose of used products with normal household waste. It must be disposed of at a

special waste station or dealer who provides this type of service.

Improper disposal of the product by the user results in administrative penalties in accordance with current legislation.

Environmental information

F-GAS REGULATION (EU) NO. 517/2014

This unit contains a fluorinated greenhouse gas that is covered by the Kyoto agreement.

The equipment contains R407C or R410A, fluorinated greenhouse gases with GWP values (Global Warming Potential) of 1774 and 2088 respectively. Do not release R407C or R410A into the atmosphere.

Inspection of the installation

Current regulations require the heating installation to be inspected before it is commissioned. The inspection must be carried out by a suitably qualified person. In addition, fill in the page for the installation data in the Operating Manual.

~	Description	Notes	Signature	Date
Brine (page 18)				
	Non-return valves			
	System flushed			
	System vented			
	Antifreeze			
	Level/Expansion vessel			
	Particle filter			
	Safety valve			
	Shut off valves			
	Circulation pumps set			
Hea	ting medium (page 20)			
	Non-return valves			
	System flushed			
	System vented			
	Expansion vessel			
	Particle filter			
	Safety valve			
	Shut off valves			
	Circulation pumps set			
Elec	tricity (page 23)			
	Connections			
	Main voltage			
	Phase voltage			
	Fuses heat pump			
	Fuses property			
	Outside sensor			
	Room sensor			
	Current sensor			
	Safety breaker			
	Earth circuit-breaker			
	Relay output for emergency mode			

2 Delivery and handling

Transport

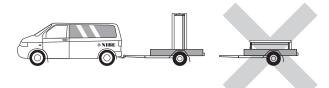
F1345 has to be transported and stored vertically in a dry place. While being moved into a building, the heat pump may be carefully tilted backwards 45°.

Ensure that F1345 has not been damaged during transport.

NOTF

The heat pump is top heavy.

If the cooling modules are pulled out and transported upright, F1345 can be transported on its back.



NOTE

Ensure that the heat pump cannot fall over during transport.

TIP ì

The side panels can be removed for easier installation in the building.

LIFT FROM THE STREET TO THE SET UP LOCATION

If the base allows, the simplest thing is to use a pallet truck to move the F1345 to the set up location.

NOTE

The centre of gravity is offset to one side (see print on the packaging).

F1345 must be lifted on the heaviest side and can be moved on a sack truck. Two people are required to lift F1345.

LIFT FROM THE PALLET TO FINAL POSITIONING

Before lifting, remove the packaging and the load anchor to the pallet as well as front and side panels.

Before lifting, the heat pump must be separated by pulling the cooling modules out from the cabinet. See the service chapter in the operating manual for instructions about the separation.

Carry the heat pump by the upper cooling module's slide rails, use gloves.

NOTE

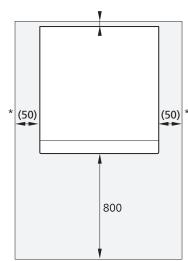

The heat pump must not be moved when only the lower cooling module has been pulled out. If the heat pump is not secured in position the upper cooling module must always be removed before the lower one can be pulled out.

SCRAPPING

For scrapping, remove the product in reverse order.

Assembly

• Place F1345 on a solid foundation indoors that can take the heat pump's weight. Use the product's adjustable feet to obtain a horizontal and stable set-up.



- Because water comes from F1345, the area where the heating pump is located must be equipped with floor drainage.
- Install with its back to an outside wall, ideally in a room where noise does not matter, in order to eliminate noise problems. If this is not possible, avoid placing it against a wall behind a bedroom or other room where noise may be a problem.

- Wherever the unit is located, walls to sound sensitive rooms should be fitted with sound insulation.
- Route pipes so they are not fixed to an internal wall that backs on to a bedroom or living room.

INSTALLATION AREA

Leave a free space of 800 mm in front of the product. Approx. 50 mm free space is required on each side, to remove the side panels (see image). The panels do not need to be removed during service. All service on F1345 can be carried out from the front. Leave space between the heat pump and the wall behind (and any routing of supply cables and pipes) to reduce the risk of any vibration being propagated.

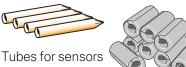
* A normal installation needs 300 – 400 mm (any side) for connection equipment, valves and electrical equipment.

Supplied components

Outdoor temperat- Insulation tape 1 x ure sensor 1 x

Temperature sensor 5 x

O-rings


16 x

Current sensor

(not 60 kW) 3 pcs

Safety valve 0.3 MPa (3 bar) 1 x

4 x

Pipe insulation 8 pcs

thread)

thread)

Non-return valves Particle filter 24 - 30 kW: 4 x 24 - 30 kW: 4 x G2 (internal G1 1/4 (internal thread) 40 - 60 kW: 2 x 40 - 60 kW: 2 x G2 (internal G1 1/4 (internal thread), 2 x G2 (internal thread)

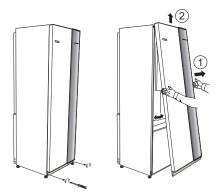
Heat conducting paste 3 x

I OCATION

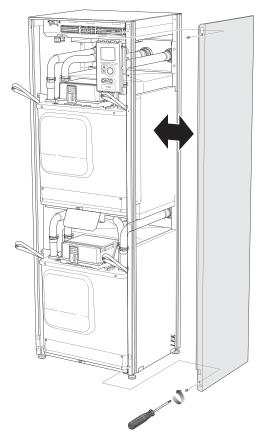
1 x

Aluminium tape

The enclosed kit is placed in the packaging next to the heat pump.


Cable tie

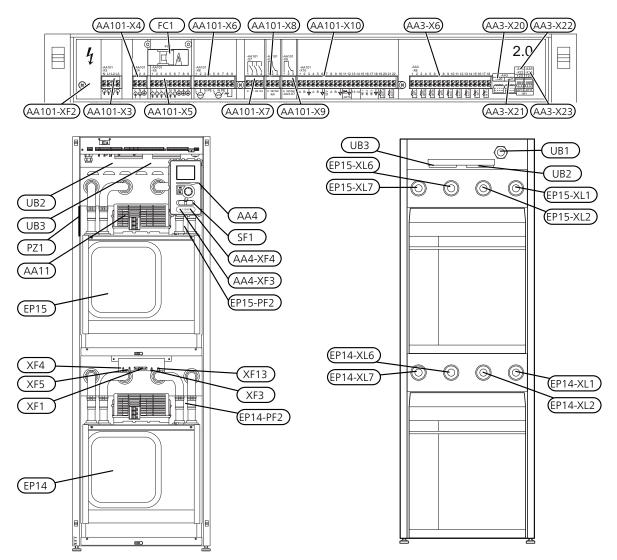
External brine pump (only for 40 and 60 kW) 1 x

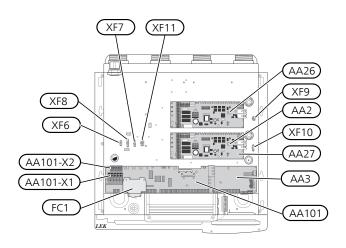

Removing the covers

FRONT COVER

- 1. Remove the screws from the lower edge of the front panel.
- 2. Lift the panel out at the bottom edge and up.

SIDE PANELS




The side covers can be removed to facilitate the installation.

- 1. Remove the screws from the upper and lower edges.
- 2. Twist the cover slightly outward.
- 3. Move the hatch outwards and backwards.
- 4. Assembly takes place in the reverse order.

3 The heat pump design

General

PIPE CONNECTIONS

XL1	Connection, heating medium flow
XL2	Connection, heating medium return
XL6	Connection, brine in

XL7 Connection, brine out

HVAC COMPONENTS

EP14	Cooling module
EP15	Cooling module

SENSORS ETC.

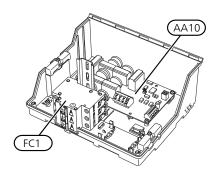
BT1	Outdoor	temperature	sensor ¹
	Outdoor	tomporataro	3011301

¹ Not illustrated

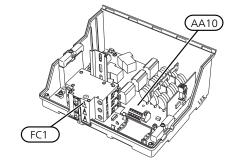
ELECTRICAL COMPONENTS

LLLCTHICAL COIVILONLINTS			
AA2	Base card		
AA3	Input circuit board		
AA3-X6	Terminal block, sensor		
AA3-X20	Terminal block -EP14 -BP8		
AA3-X21	Terminal block -EP15 -BP8		
AA3-X22	Terminal block, flow meter -EP14 -BF1		
AA3-X23	Terminal block, flow meter -EP15 -BF1		
AA4	Display unit		
AA4-XF3	USB outlet (no function)		
AA4-XF4	Service outlet (No function)		
AA11	Motor module		
AA23	Communication board		
AA26	Base card 2		
AA27	Relay board for base		
AA101	Interface board		
AA101-X1	Terminal block, incoming electrical supply		
AA101-X2	Terminal block, supply -EP14		
AA101-X3	Terminal block, operating voltage out -X4		
AA101-X4	Terminal block, operating voltage in (tariff option)		
AA101-X5	Terminal block, supply, external accessor- ies.		
AA101-X6	Terminal block -QN10 and -GP16		
AA101-X8	Emergency mode relay		
AA101-X9	Alarm relay, AUX relay		
AA101-X10	Communication, PWM, power supply		
FC1	Miniature circuit-breaker		
RF3	EMC-filter		
XF1	Connector, electrical supply to compressor,		
	cooling module -EP14		
XF3	Connector, compressor heater -EP14		
XF4	Connector, brine pump, cooling module		
	-EP14 (only 24 and 30 kW)		
XF5	Connector, heating medium pump, cooling module -EP14		
XF6	Connector, compressor heater -EP15		
XF7	Connector, brine pump, cooling module -EP15 (only 24 and 30 kW)		

Connector, heating medium pump, cooling
module -EP15
Communication motor module -EP15
Communication motor module -EP14
Pumps, compressor heater -EP14
Communication motor module -EP14


MISCELLANEOUS

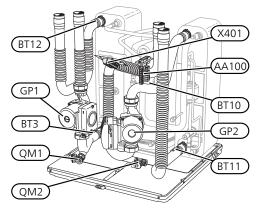
PZ1	Rating plate
PZ2	Type plate, cooling section
PZ3	Serial number plate
UB1	Cable gland, incoming electricity
UB2	Cable gland, power
UB3	Cable gland, signal


Designations according to standard EN 81346-2.

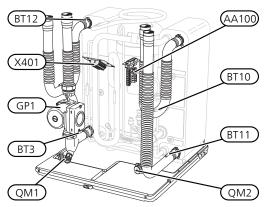
Motor module (AA11)

F1345 24 KW

F1345 30, 40 and 60 kW

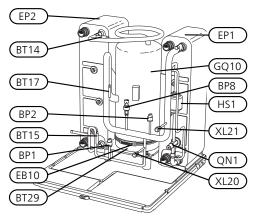

ELECTRICAL COMPONENTS

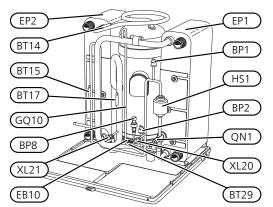
AA10	Soft-start card

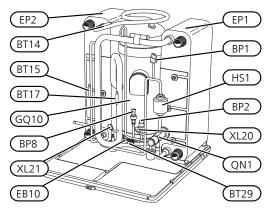

FC1 Miniature circuit-breaker

Cooling sections

F1345 24 and 30 kW, 3x400 V


F1345 40 and 60 kW, 3x400 V


F1345 24 kW, 3x400 V


F1345 30 kW, 3x400 V

F1345 40 kW, 3x400 V

F1345 60 kW, 3x400 V

PIPE CONNECTIONS

- XL20 Service connection, high pressure
- XL21 Service connection, low pressure

HVAC COMPONENTS

- GP1 Circulation pump
- GP2 Brine pump
- QM1 Drainage, climate system
- QM2 Draining, brine side

SENSORS ETC.

- BP1 High pressure pressostat
- BP2 Low pressure pressostat
- BP8 Sensor, low pressure
- BT3 Temperature sensors, heating medium return
- BT10 Temperature sensor, brine in
- BT11 Temperature sensor, brine out
- BT12 Temperature sensor, condenser supply line
- BT14 Temperature sensor, hot gas
- BT15 Temperature sensor, fluid pipe
- BT17 Temperature sensor, suction gas
- BT29 Temperature sensor, compressor

ELECTRICAL COMPONENTS

- AA100 Joint card
- EB10 Compressor heater
- QA40 Inverter
- RF2 EMC-filter
- X401 Joint connector, compressor and motor module

COOLING COMPONENTS

- EP1 Evaporator
- EP2 Condenser
- GQ10 Compressor
- HS1 Drying filter
- QN1 Expansion valve

4 Pipe connections

General

Pipe installation must be carried out in accordance with current standards and directives. F1345 can operate with a return temperature of up to 58 °C and an outgoing temperature of 65 °C.

F1345 is not equipped with internal shut-off valves; instead, these should be installed to facilitate any future servicing. In addition, non-return valves and particle filters must be fitted.

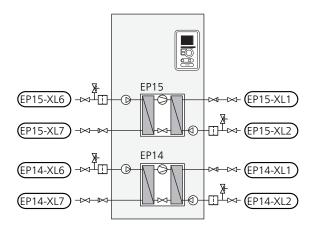
The pipe systems have to be flushed clean before F1345 is connected, to prevent any contaminants from damaging the components.

NOTE

Do not solder directly on the pipes in F1345, because of internal sensors.

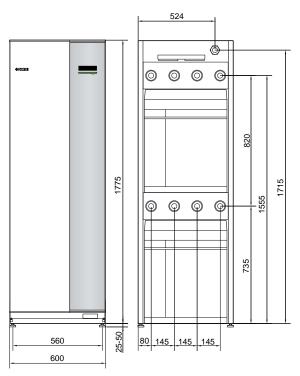
Compression ring coupling alternatively pressure connection should be used.

NOTE

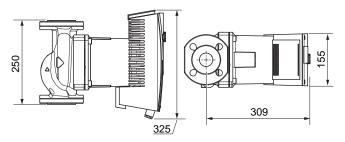

The heating system's pipes must be earthed to prevent a potential difference between them and the building's protective earth.

SYMBOL KEY

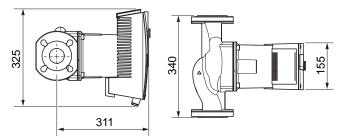
SYSTEM DIAGRAM

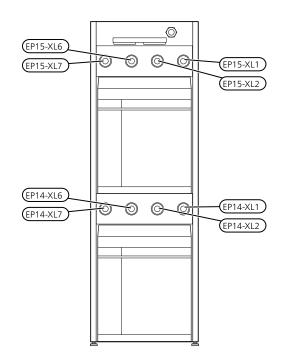

F1345 consists of two heat pump modules, circulation pumps and control system with possibility of additional heat. F1345 is connected to the brine and heating medium circuits.

In the heat pump evaporator, the brine (water mixed with anti-freeze, glycol or ethanol) releases its energy to the refrigerant, which is vaporised in order to be compressed in the compressor. The refrigerant, of which the temperature has now been raised, is passed to the condenser where it gives off its energy to the heating medium circuit and, if necessary, to any docked water heater. If there is a greater need for heating/hot water than the compressors can provide it is possible is to connect an external immersion heater.



- EP14 Cooling module
- EP15 Cooling module
- XL1 Connection, heating medium flow
- XL2 Connection, heating medium return
- XL6 Connection, brine in
- XL7 Connection, brine out


Dimensions and pipe connections



External brine pump 40 kW

External brine pump 60 kW

PIPE DIMENSIONS

Connection	
(XL1) Heating medium sup-	internal thread G 1½
ply	external thread G2
(XL2) Heating medium re-	internal thread G 1½
turn	external thread G2
(XL6) Brine in	internal thread G 1½
	external thread G2
(XL7) Brine out	internal thread G 1½
	external thread G2
External brine pump 40 kW	compression ring coupling
	Ø 42mm
External brine pump 60 kW	compression ring coupling Ø 54mm

Brine side

COLLECTOR

🗩 Caution

The length of the collector hose varies depending on the rock/soil conditions, climate zone and on the climate system (radiators or underfloor heating) and the heating requirement of the building Each installation must be sized individually.

Max. length per coil for the collector should not exceed 500 m.

The collectors must always be connected in parallel with the possibility of adjusting the flow for the relevant coil.

For surface soil heat, the hose should be buried at a depth determined by local conditions and the distance between the hoses should be at least 1 metre.

For several bore holes, the distance between the holes must be determined according to local conditions.

Ensure the collector hose rises constantly towards the heat pump to avoid air pockets. If this is not possible, airvents should be used.

Because the temperature of the brine system may fall below 0 $^{\circ}$ C, it must be protected against freezing down to -15 $^{\circ}$ C. When making the volume calculation, 1 litres of ready mixed brine per metre of collector hose (applies when using PEM-hose 40x2.4 PN 6.3) is used as a guide value.

Caution

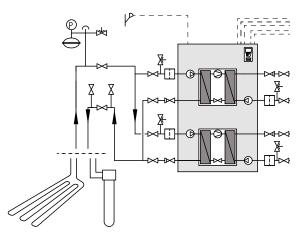
Because the temperature of the brine system varies depending on the heat source, the 5.1.7 "br pmp al set." menu must be set to a suitable value.

CONNECTING THE BRINE SIDE

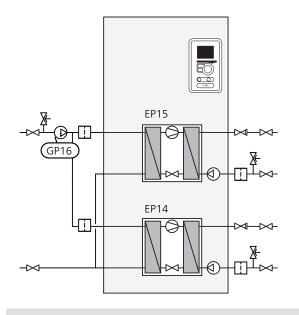
- The pipe connections are on the rear of the heat pump.
- Insulate all indoor brine pipes against condensation.

♠ NOTE

Condensation may drip from the expansion vessel. Position the vessel so that this does not harm other equipment.



Caution


When necessary you should install venting valves in the brine system.

- Mark the brine system with the antifreeze that is used.
- Install the supplied safety valve at the expansion vessel as illustrated in the outline diagram. The entire length of the overflow water pipe from the safety valves must be inclined to prevent water pockets and must also be frost-free.
- Install shut off valves as close to the heat pump as possible so that the flow to individual cooling modules can be shut off. Extra safety valves between the particle filter and shut off valves (according the outline diagram) are required.
- Fit the supplied particle filter on the incoming pipe.
- Fit the supplied non-return valves on the outgoing pipe.

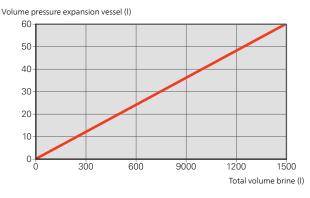
In the case of connection to an open groundwater system, an intermediate frost-protected circuit must be provided, because of the risk of dirt and freezing in the evaporator. This requires an extra heat exchanger.

Install the brine pump (GP16) according to the circulation pump manual for connection of incoming brine (EP14-XL6) and (EP15-XL6) between the heat pump and shutoff valve (see image).

NOTE

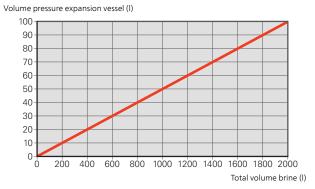
Insulate the brine pump against condensation (do not cover the drainage hole).

EXPANSION VESSEL


The brine circuit must be supplied with a pressure expansion vessel.

The brine side must be pressurised to at least 0.05 MPa (0.5 bar).

The pressure expansion vessel should be dimensioned as set out in the following diagram, to prevent malfunctions. The diagrams cover the temperature range from 10 °C to +20 °C at pre-pressure 0.05 MPa (0.5 bar) and the safety valve's opening pressure of 0.3 MPa (3.0 bar).


Ethanol 28% (volume percent)

In installations with ethanol (28% volume percent) as the brine the pressure expansion vessel must be dimensioned according to the following diagram.

Ethylene glycol 40% (volume percent)

In installations with ethylene glycol (40% volume percent) as the brine the pressure expansion vessel must be dimensioned according to the following diagram.

Heating medium side Cold and hot water

CONNECTING THE CLIMATE SYSTEM

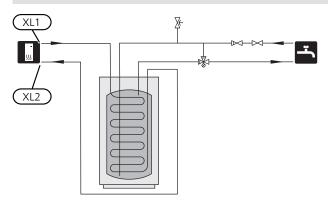
A climate system is a system that regulates indoor comfort with the help of the control system in F1345 and for example radiators, underfloor heating/cooling, fan convectors etc.

- The pipe connections are on the rear of the heat pump.
- Install the necessary safety equipment and shut-off valves (installed as close to F1345 as possible so that the flow to individual cooling modules can be shut off).
- Fit the supplied particle filter on the incoming pipe.
- The safety valve must have a maximum 0.6 MPa (6.0 bar) opening pressure and be installed on the heating medium return. The entire length of the overflow water pipe from the safety valve must be inclined, to prevent water pockets and must also be frost-free.
- When connecting to a system with thermostats on all radiators, a relief valve must be fitted, or some of the thermostats must be removed to ensure sufficient flow.
- Fit the supplied non-return valves on the outgoing pipe.

Caution

When necessary you should install vent valves in the climate system.

Caution


F1345 is designed so that heating production can be performed using one or two cooling modules. However, this entails different pipe or electrical installations.

CONNECTING THE HOT WATER HEATER

- Fit shut-off valve, non-return valve and safety valve as illustrated.
- The safety valve must have max. 1.0 MPa (10.0 bar) opening pressure, and be installed on the incoming domestic water line as shown.
- A mixer valve must also be installed, if the factory setting for hot water is changed. National regulations must be observed.
- Hot water production is activated in the start guide or in menu 5.2.

The heat pump/system is designed so that hot water production can occur with one or several cooling modules. This however entails different pipe or electrical installations.

Fixed condensing

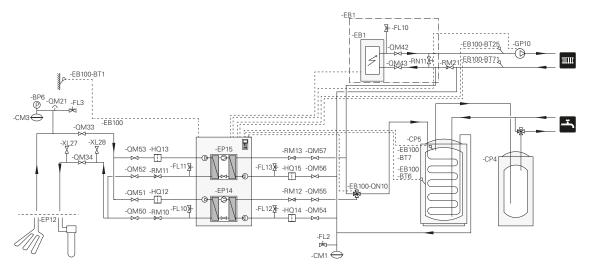
If F1345 is to work with fixed condensing, you must connect external supply temperature sensor (BT25) according to the description on page 26. In addition, you must make the following menu settings.

Menu	Menu setting (local vari- ations may be required)
1.9.3.1 - min. flow line	Desired temperature in the
temp. heating	tank.
5.1.2 - max flow line temper-	Desired temperature in the
ature	tank.
5.1.10 - op. mod heat med	intermittent
pump	
4.2 - op. mode	manual

Docking alternatives

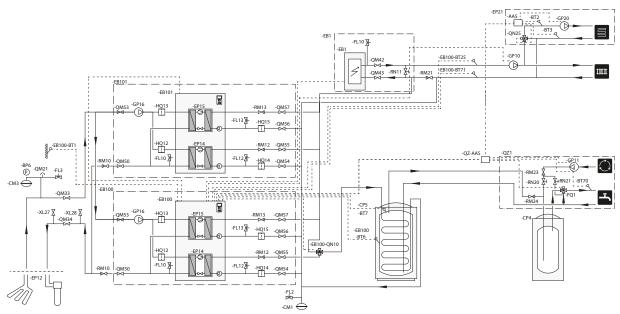
F1345 can be connected in several different ways. Examples are shown below.

The examples are outline diagrams; items included on delivery of the product are set out in section "Supplied components".


Further information about the options is available at nibe.eu and in the manuals for the accessories used. See page 42 for the list of the accessories that can be used with F1345.

EXPLANATION

EB1 EB1 FL10 QM42, QM43 RN11 EB100, EB101 BT1 BT6 BT25	External additional heat External electrical additional heat Safety valve, heating medium side Shut-off valve, heating medium side Trim valve Heat pump system Temperature sensor, outdoor Temperature sensor, hot water charging Temperature sensor, heating medium flow, external
BT71	Temperature sensor, heating medium return, external
EB100	Heat pump F1345 (Master)
EB101	Heat pump F1345 (Slave)
EP14, EP15	Cooling module
FL10, FL11	Safety valve, collector side
FL12, FL13	Safety valve, heating medium side
HQ12 - HQ15	Particle filter
QM50 - QM53	Shut-off valve, brine side
QM54 - QM57	Shut-off valve, heating medium side
QN10	Reversing valve, heating/hot water
RM10 - RM13	Non-return valve
QZ1	Hot water circulation
AA5	Accessory card
BT70	Temperature sensor, hot water flow
FQ1	Mixer valve, hot water
GP11	Circulation pump, domestic hot water circulation
RM23, RM24	Non-return valve
RN20, RN21	Trim valve
EP21	Climate system 2
BT2	Temperature sensors, heating medium
	flow
BT3	Temperature sensors, heating medium return
GP20	Circulation pump
QN25	Shunt valve
Miscellaneous	-
AA5	Accessory card
-	


BP6	Manometer, brine side
BT7	Temperature sensor, hot water flow
CP5	Storage tank
CM1	Expansion vessel, closed, heating medi-
	um side
CM3	Expansion vessel, closed, brine side
CP4	Additional water heater
EP12	Collector, brine side
FL2	Safety valve, heating medium side
FL3	Safety valve, brine
GP10	Circulation pump, heating medium extern-
	al
QM21	Venting valve, brine side
QM33	Shut off valve, brine flow
QM34	Shut off valve, brine return
RM21	Non-return valve
XL27 - XL28	Connection, filling brine

F1345 24/30 KW DOCKED WITH ELECTRIC ADDITIONAL HEAT AND HOT WATER HEATER (FLOATING CONDENSING)

The heat pump (EB100) prioritises charging of hot water with a cooling module (EP14) via a reversing valve (EB100-QN10). When the water heater/accumulator tank (CP5) is fully charged, (EB100-QN10) switches to the heating circuit. When there is a demand for heat, cooling module (EP15) starts first. On greater demand, cooling module (EP14) also starts for heating operation.

Additional heat (EB1) is connected automatically, when the energy requirement exceeds the heat pump capacity.

TWO F1345 40/60 KW DOCKED WITH ELECTRIC ADDITIONAL HEAT AND WATER HEATER (FLOATING CONDENSING)

The heat pump (EB100) prioritises charging of hot water with a cooling module (EP14) via a reversing valve (EB100-QN10). When the water heater/accumulator tank (CP5) is fully charged, (EB100-QN10) switches to the heating circuit. When there is a demand for heat, cooling module (EP15) starts in heat pump (EB101) first. In the event of a large demand, cooling module (EP14) also starts in (EB101) for heating operation.

Additional heat (EB1) is connected automatically, when the energy requirement exceeds the heat pump capacity.

5 Electrical connections

General

All electrical equipment, except the outdoor sensors, room sensors and the current sensors are ready connected at the factory.

For 40 and 60 kW, the brine pump is enclosed (does not apply to all countries, see list of enclosed items) and must be installed outside the heat pump.

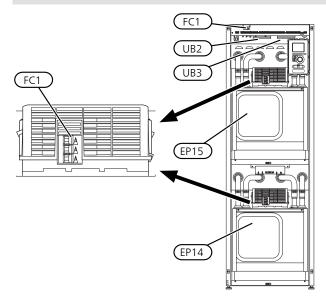
- Disconnect the heat pump before insulation testing the house wiring.
- If the building is equipped with an earth-fault breaker, each F1345 should be equipped with a separate one.
- If a miniature circuit breaker is used this should have at least motor characteristic "C". See page 46 for fuse size.
- Electrical wiring diagram for the heat pump, see page 53.
- Communication and sensor cables to external connections must not be laid close to high current cables.
- The minimum area of communication and sensor cables to external connections must be 0.5 mm² up to 50 m, for example EKKX or LiYY or equivalent.
- When cable routing in F1345, cable grommets (e.g. UB2, power cables and UB3, signal cables, marked in image) must be used. Secure the cables in the grooves in the panel using cable ties (see image).

Λ NOTE

The switch (SF1) must not be moved to "I" or " Δ " until the boiler has been filled with water. Components in the product could be damaged.

NOTE

Electrical installation and service must be carried out under the supervision of a qualified electrician. Cut the current with the circuit breaker before carrying out any servicing. Electrical installation and wiring must be carried out in accordance with the stipulations in force.



NOTE

Check the connections, main voltage and phase voltage before the machine is started, to prevent damage to the heat pump electronics.

NOTE

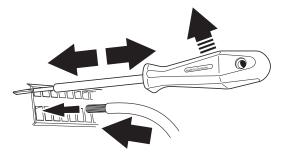
Refer to the outline diagram of your system for positioning of the temperature sensor.

MINIATURE CIRCUIT-BREAKER

The heat pump operating circuit and some of its internal components are internally fused by a miniature circuit breaker (FC1).

Miniature circuit-breakers (EP14-FC1) and (EP15-FC1) cut the power to the relevant compressor if the current is too high.

Resetting

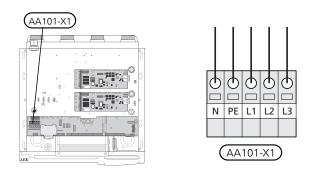

Miniature circuit-breakers (EP14-FC1) and (EP15-FC1) are accessible behind the front cover. The affected miniature circuit-breakers are reset by pushing back to the fused position.

Check the miniature circuit-breakers. They may have tripped during transportation.

CABLE LOCK

Use a suitable tool to release/lock cables in the heat pump terminal blocks.

Connections



NOTE

To prevent interference, unscreened communication and/or sensor cables to external connections must not be laid closer than 20 cm from high voltage cables.

POWER CONNECTION

F1345 must be installed with a disconnect option on the supply cable. Minimum cable area must be sized according to the fuse rating used. Supplied cable for incoming supply electricity is connected to terminal block X1. All installation must be carried out in accordance with current norms and directives.

NOTE

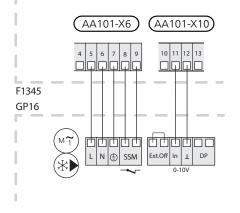
It is important that the electrical connection is made with the correct phase sequence. With the incorrect phase sequence, the compressor does not start and an alarm is displayed.

TARIFF CONTROL

If the voltage to the compressors disappears for a given period, simultaneous blocking of these must take place via software controlled input (AUX input) to avoid alarm, see page 25.

At the same time, external operating voltage for the control system must be connected to F1345, see section "Connecting external operating voltage for the control system".

CONNECTING EXTERNAL BRINE PUMP



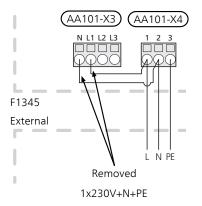
Only 40 and 60 kW.

Connect the external circulation pump (GP16) to terminal block AA101-X6:5 (230 V), AA101-X6:6 (N) and AA101-X6:7 (PE) as shown.

Connect the external circulation pump's motor protection (GP16:SSM) to the terminal block AA101-X6:8 and AA101-X6:9 as illustrated.

Connect 0-10V, as shown, to terminal block AA101-X10:11 and AA101-X10:12 to the external circulation pump, according to its wiring diagram.

CONNECTING EXTERNAL OPERATING VOLTAGE FOR THE CONTROL SYSTEM

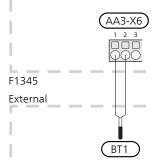


NOTE

Mark up any junction boxes with warnings for external voltage.

When connecting external operating voltage with separate earth-fault breaker, remove the cables between terminal block AA101-X3:N and AA101-X4:2 and between terminal block AA101-X3:L1 and AA101-X4:1 (as illustrated).

Operating voltage (1x230V+N+PE) is connected to AA101-X4:3 (PE), AA101-X4:2 (N) and AA101-X4:1 (L) (as illustrated).

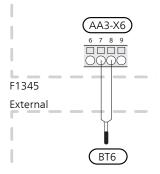

OUTDOOR TEMPERATURE SENSOR (BT1)

Install the outside temperature sensor (BT1) in the shade on a wall facing north or north-west, so it is unaffected by the

morning sun.

Connect the sensor to terminal block AA3-X6:1 and AA3-X6:2. Use a twin core cable with a cable area of at least 0.5 mm^2 .

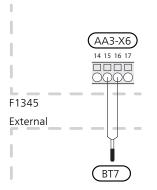
If a conduit is used it must be sealed to prevent condensation in the sensor capsule.



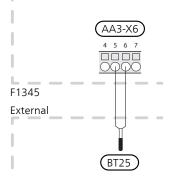
TEMPERATURE SENSOR, HOT WATER CHARGING (BT6)

The temperature sensor, hot water charging (BT6) is placed in the submerged tube on the water heater.

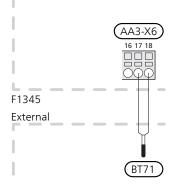
Connect the sensor to terminal block AA3-X6:7 and AA3-X6:8. Use a twin core cable with a cable area of at least 0.5 mm^2 .


Hot water charging is activated in menu 5.2 or in the start guide.

TEMPERATURE SENSOR, HOT WATER TOP (BT7)


A temperature sensor for hot water top (BT7) can be connected to F1345 for showing the water temperature at the top of the tank (if possible).

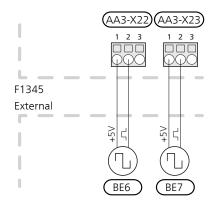
Connect the sensor to terminal block AA3-X6:15 and AA3-X6:16. Use a twin core cable with a cable area of at least 0.5 mm².


TEMPERATURE SENSOR, EXTERNAL SUPPLY LINE (BT25)

Connect temperature sensor, external supply line (BT25) to terminal block AA3-X6:5 and AA3-X6:6. Use a twin core cable with a cable area of at least 0.5 mm².

TEMPERATURE SENSOR, EXTERNAL **RETURN LINE (BT71)**

Connect temperature sensor, external return line (BT71) to terminal block AA3-X6:17 and AA3-X6:18. Use a twin core cable with a cable area of at least 0.5 mm².


CONNECTING EXTERNAL ENERGY METER

NOTE

Connection of external energy meter requires version 35 or later on input board (AA3) as well as "display version" 7157R3 or later.

One or two energy meters (BE6, BE7) are connected to terminal block X22 and/or X23 on input board (AA3).

Activate the energy meter(s) in menu 5.2.4 and then set the desired value (energy per pulse) in menu 5.3.21.

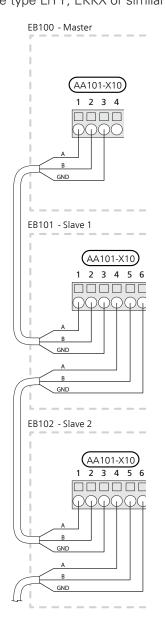
ptional connections

MASTER/SLAVE

Several heat pumps can be interconnected by selecting one heat pump as master and the others as slaves. Ground source heat pump models with master/slave functionality from NIBE can be connected to F1345.

The heat pump is always delivered as master and up to till 8 slaves can be connected to it. In systems with several heat pumps, each pump must have a unique name, i.e. only one heat pump can be "Master" and only one can be e.g. "Slave 5". Set master/slaves in menu 5.2.1.

External temperature sensors and control signals must be connected solely to the master, except for external control of the compressor module and reversing valve(s) (QN10) that can be connected one to each heat pump. See page 31 for connecting the reversing valve (QN10).


NOTE

When several heat pumps are connected together (master/slaves), an external supply temperature sensor (BT25) and an external return sensor BT71 must be used. If these sensors are not connected, the product will give a sensor fault.

Connect the communications cables to the Master's terminal block AA101-X10:1 (A), AA101-X10:2 (B) and AA101-X10:3 (GND), as illustrated.

Incoming communications cables from Master or Slave to Slave are connected to the terminal block AA101-X10:1 (A), AA101-X10:2 (B) and AA101-X10:3 (GND), as illustrated.

Incoming communications cables from Slave to Slave are connected to terminal block AA101-X10:4 (A), AA101-X10:5 (B) and AA101-X10:6 (GND), as illustrated. Use cable type LiYY, EKKX or similar.

I OAD MONITOR

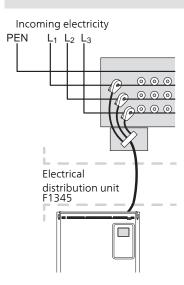
When many power consumers are connected in the property at the same time as the electric additional heat is in operation, there is a risk of the property's main fuses tripping. F1345 has an integrated load monitor that controls the power steps for the electric additional heat by disconnecting step by step in event of overload in a phase. Reconnection occurs when other current consumption is reduced.

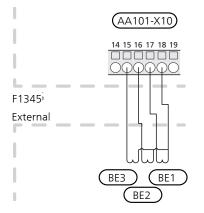
Connecting current sensors

A current sensor (BE1 - BE3) must be installed on each incoming phase conductor into the electrical distribution unit, to measure the current. The electrical distribution unit is an appropriate installation point.

Connect the current sensors to a multi-core cable in an enclosure directly adjacent to the electrical distribution unit. The multi-core cable between the enclosure and F1345 must have a cable area of at least 0.5 mm².

Connect the cable to terminal block AA101-X10:15 to AA101-X10:16 and AA101-X10:17 as well as to the common AA101-X10:18 terminal block for the three current sensors.


The value for the size of the fuse is set in menu 5.1.12 to correspond with the size of the property's main fuse. Here it is also possible to adjust the current sensor's transformer ratio.

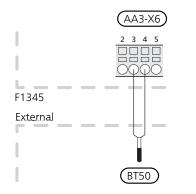

Enclosed current sensors have a transformer ratio of 300 and, if these are used, the incoming current must not exceed 50 A.

NOTE

The voltage from the current sensor to the input board must not exceed 3.2 V.

ROOM SENSOR

F1345 can be supplemented with a room sensor (BT50). The room temperature sensor has up to three functions:


- 1. Show current room temperature in the heat pump's display.
- 2. Option of changing the room temperature in °C.
- 3. Makes it possible to change/stabilise the room temperature.

Install the sensor in a neutral position where the set temperature is required. A suitable location is on a free inner wall in a hall approx. 1.5 m above the floor. It is important that the sensor is not obstructed from measuring the correct room temperature by being located, for example, in a recess, between shelves, behind a curtain, above or close to a heat source, in a draft from an external door or in direct sunlight. Closed radiator thermostats can also cause problems.

F1345 operates without the sensor, but if you want to read the home's indoor temperature from the display, the sensor must be installed. Connect the room sensor to AA3-X6:3 and AA3-X6:4.

If the sensor is to be used to change the room temperature in °C and/or to change/stabilise the room temperature, the sensor must be activated in menu 1.9.4.

If the room sensor is used in a room with underfloor heating it should only have an indicatory function, not control of the room temperature.

Caution

Changes of temperature in the accommodation take time. For example, short periods of change combined with underfloor heating will not result in a noticeable difference in the room temperature.

STEP CONTROLLED ADDITIONAL HEAT

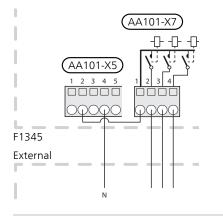
NOTE

Mark up any junction boxes with warnings for external voltage.

External step-controlled additional heat can be controlled by up to three potential-free relays in F1345 (3 step linear or 7 step binary). With the AXC 50 accessory, a further three potential-free relays are used for additional heat control, which then gives max 3+3 linear or 7+7 binary steps.

Step in occurs with at least 1 minute interval and step outs with at least 3 seconds interval.

Connect the common phase to terminal block AA101-X7:1.


Step 1 is connected to terminal block AA101-X7:2.

Step 2 is connected to terminal block AA101-X7:3.

Step 3 is connected to terminal block AA101-X7:4.

The settings for step controlled additional heat are made in menu 4.9.3 and menu 5.1.12.

All additional heat can be blocked by connecting a potential-free switch function to AUX input on terminal block AA3-X6 and AA101-X10. The function must be activated in menu 5.4.

J¶

Caution

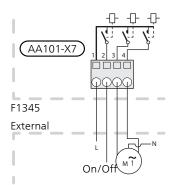
If the relays are to be used for operating voltage, bridge the supply from AA101-X5:1 - 3 to AA101-X7:1. Connect the neutral from the external additional heat to AA101-X5:4 - 6.

SHUNT CONTROLLED ADDITIONAL HEAT

∖ NOTE

Mark up any junction boxes with warnings for external voltage.

This connection enables an external additional heater, e.g. an oil boiler, gas boiler or district heating exchanger to aid with heating.


The connection requires that the boiler sensor (BT52) is connected to one of the AUX inputs in F1345, see page 32. The sensor is only selectable when "shunt controlled add. heat" is selected in menu 5.1.12.

F1345 controls a shunt valve and start signal for the additional heating using three relays. If the unit does not manage to maintain the correct supply temperature, the additional heat starts. When the boiler sensor (BT52) exceeds the set value, F1345 sends a signal to the shunt (QN11) to open from the additional heat. The shunt (QN11) is controlled to ensure the true supply temperature corresponds with the control system's theoretically calculated set point value. When the heating demand drops sufficiently so that additional heat is no longer required, the shunt (QN11) closes completely. Factory-set minimum operating time for the boiler is 12 hours (can be adjusted in menu 5.1.12).

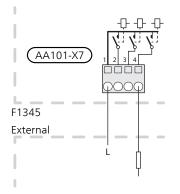
The settings for shunt controlled additional heat are made in menu 4.9.3 and menu 5.1.12.

Connect the shunt motor (QN11) to terminal block AA101-X7:4 (230 V, open) and 3 (230 V, close).

To control switching the additional heat on and off, connect it to terminal block AA101-X7:2.

All additional heat can be blocked by connecting a potential-free switch function to AUX input on terminal block AA3-X6 and AA101-X10. The function must be activated in menu 5.4.

ADDITIONAL HEAT IN TANK


NOTE

Mark up any junction boxes with warnings for external voltage.

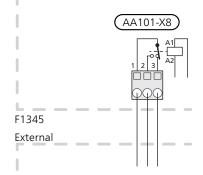
This connection allows an external additional heater in the tank to assist with the production of hot water when the compressors are busy producing heating.

Additional heat in tank is activated in menu 5.1.12.

To control switching the additional heat on and off in the tank, connect it to terminal block AA101-X7:4.

All additional heat can be blocked by connecting a potential-free switch function to AUX input on terminal block AA3-X6 and AA101-X10. The function must be activated in menu 5.4.

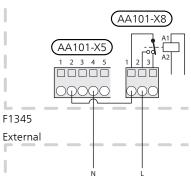
RELAY OUTPUT FOR EMERGENCY MODE



NOTE

Mark up any junction boxes with warnings for external voltage.

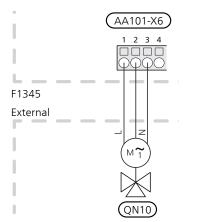
When the switch (SF1) is set to " Δ " mode (emergency mode), the internal circulation pumps (EP14-GP1 and EP15-GP1) and the potential-free variable emergency mode relay (AA101-K4) are activated. External accessories are disconnected.


The emergency mode relay can be used to activate external additional heat, an external thermostat must then be connected to the control circuit to control the temperature. Ensure that the heating medium circulates through the external additional heating.

Caution

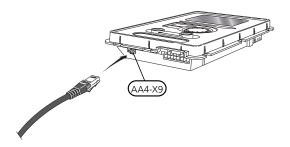
No hot water is produced when emergency mode is activated.

Caution


If the relays are to be used for operating voltage, bridge the supply from AA101-X5:1 -3 to AA101-X8:1. Connect the neutral from the external additional heat to AA101-X5:4 - 6.

REVERSING VALVES

F1345 can be supplemented with an external reversing valve (QN10) for hot water control (see page 42 for accessory).


Connect the external reversing valve (QN10) to terminal block AA101-X6:3 (N), AA101-X6:2 (operation) and AA101-X6:1 (L) as illustrated.

With several heat pumps connected as master/slave, connect the reversing valve electrically to a suitable heat pump. The reversing valve is controlled by the master heat pump regardless which heat pump it is connected to.

NIBE UPLINK

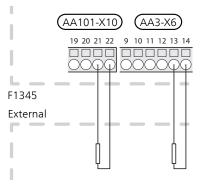
Connect a network-connected cable (straight, Cat.5e UTP) with RJ45 contact (male) to contact AA4-X9 on the display unit (as illustrated). Use the cable grommet (UB3) on the heat pump for cable routing.

EXTERNAL CONNECTION OPTIONS (AUX)

F1345 has software-controlled AUX inputs and outputs on the input board (AA3), for connecting the external switch function or sensor. This means that when an external switch function (the switch must be potentialfree) or sensor is connected to one of six special connections, this function must be selected for the correct connection in menu 5.4.

	soft in/outputs 5.4
AUX1	activate temp lux
AUX2	block add. heat
AUX3	external adjustment
AUX4	block compressor
AUX5	activate fan speed 1
AA101-X9	hot water recirc.

For certain functions, accessories may be required.


Selectable inputs

Selectable inputs on the input board for these functions are:

AUX1	AA3-X6:9-10
AUX2	AA3-X6:11-12
AUX3	AA3-X6:13-14

Selectable inputs on terminal block AA101-X10 for these functions are:

AUX4	AA101-X10:19-20
AUX5	AA101-X10:21-22

The example above uses the inputs AUX3 (AA3-X6:13-14) and AUX5 (AA101-X10:21-22) on the terminal block.

Selectable output

A selectable output is AA101-X9.

Some of the following functions can also be activated and scheduled via menu settings.

Possible selection for AUX inputs

Temperature sensor

Temperature sensor can be connected to F1345.

Available options are:

- boiler (BT52) (shown if shunt-controlled additional heat is selected in menu 5.2.4 or if shunt-controlled additional heat is selected in menu 5.1.12)
- cooling/heating (BT74), determines when it is time to switch between cooling and heating mode (can be selected when the cooling function is activated in menu 5.2.4).

When several room sensors have been installed, you can select which one of them will be controlling in menu 1.9.5.

When (BT74) has been connected and activated in menu 5.4, no other room sensor can be selected in menu 1.9.5.

• return temperature (BT71)

Monitor

Available options are:

- alarm from external units. The alarm is connected to the control, which means that the malfunction is presented as an information message in the display. Potential-free signal of type NO or NC.
- level (accessory NV10)/, pressure/flow monitor for the brine (NC).
- pressure switch for climate system (NC).
- stove monitor. (A thermostat that is connected to the chimney. When the negative pressure is too low and the thermostat is connected, the fans in ERS (NC) are switched off.

External activation of functions

An external switch function can be connected to F1345 to activate various functions. The function is activated during the time the switch is closed.

Possible functions that can be activated:

- forced control of brine pump
- hot water comfort mode "temporary lux"
- hot water comfort mode "economy"
- "external adjustment"

When the switch is closed, the temperature changes in °C (if the room sensor is connected and activated). If a room sensor is not connected or not activated, the desired change of "temperature" (heating curve offset) is set with the number of steps selected. The value is adjustable between -10 and +10. External adjustment of climate systems 2 to 8 requires accessories. – climate system 1 to 8

The value for the change is set in menu 1.9.2, "external adjustment".

• activation of one of four fan speeds.

(Can be selected if ventilation accessory is activated.)

The following five options are available:

- 1-4 is normally open (NO)
- 1 is normally closed (NC)

The fan speed is activated during the time the switch is closed. Normal speed is resumed when the switch is opened again.

SG ready

Caution

This function can only be used in mains networks that support the "SG Ready" standard.

"SG Ready" requires two AUX inputs.

"SG Ready" is a smart form of tariff control, which allows your electricity supplier to affect the indoor, hot water and/or pool temperatures (if applicable) or simply block the additional heat and/or compressor in F1345 at certain times of the day (can be selected in menu 4.1.5 after the function is activated). Activate the function by connecting potential-free switch functions to two inputs selected in menu 5.4 (SG Ready A and SG Ready B).

Closed or open switch means one of the following:

- Blocking (A: Closed, B: Open)

"SG Ready" is active. The compressor in the heat pump and additional heat is blocked like the day's tariff blocking.

– Normal mode (A: Open, B: Open)

"SG Ready" is not active. No effect on the system.

- Low price mode (A: Open, B: Closed)

"SG Ready" is active. The system focuses on costs savings and can for example exploit a low tariff from the electricity supplier or over-capacity from any own power source (effect on the system can be adjusted in the menu 4.1.5).

- Overcapacity mode (A: Closed, B: Closed)

"SG Ready" is active. The system is permitted to run at full capacity at over capacity (very low price) with the electricity supplier (effect on the system is settable in menu 4.1.5).

(A = SG Ready A and B = SG Ready B)

External blocking of functions

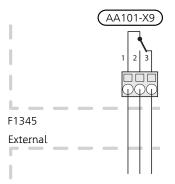
An external switch function can be connected to F1345 for blocking various functions. The switch must be potential-free and a closed switch results in blocking.

NOTE

Blocking entails a risk of freezing.

Functions that can be blocked:

- heating (blocking of heating demand)
- compressor (blocking of EP14 and EP15 can be combined. If you want to block both (EP14) and (EP15), this will occupy two AUX inputs).
- hot water (hot water production). Any hot water circulation (HWC) remains in operation.
- internally controlled additional heat
- tariff blocking (additional heat, compressor, heating, cooling and hot water are disconnected)


Possible selections for AUX output

It is possible to have an external connection through the relay function via a potential-free variable relay (max 2 A) on terminal block AA101-X9.

NOTE

An accessory board is required if several functions are to be connected to terminal block AA101-X9 at the same time that indication of the common alarm is activated (see page 42).

The picture shows the relay in the alarm position.

When switch (SF1) is in the " \mathcal{O} " or " Δ " position the relay is in the alarm position.

Caution

The relay outputs may be subjected to a max load of 2 A at resistive load (230V AC).

TIP

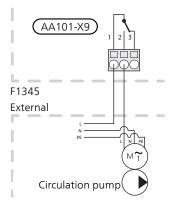
The AXC accessory is required if more than one function is to be connected to the AUX output.

Optional functions for external connection:

Indications

- alarm indication
- indication of common alarm
- cooling mode indication (only applies if there are cooling accessories)
- holiday indication

Control


- controlling ground water pump
- control of circulation pump for hot water circulation
- control of external circulation pump (for heating medium)
- · control of additional heat in charge circuit

NOTE

The relevant distribution box must be marked with a warning about external voltage.

External circulation pump, ground water pump or hot water circulation pump is connected to the common alarm relay as illustrated below. If the pump has to work in the event of alarm, the cable is moved from position 2 to position 3.

Caution

For relay position operation, see section "Relay output for emergency mode", see page 30.

Connecting accessories

Instructions for connecting accessories are in the installation instructions provided for the respective accessory. See information at nibe.eu for the list of the accessories that can be used with F1345.

6 Commissioning and adjusting

Preparations

- ^{1.} Check that the switch (SF1) is in position " \mathbf{U} ".
- 2. Check for water in any hot water heater and climate system.

<u>/i/</u>

Caution

Check the miniature circuit-breaker. It may have tripped during transport.

NOTE

Do not start F1345 if there is a risk that the water in the system has frozen.

Filling and venting

FILLING AND VENTING THE CLIMATE SYSTEM

Fillina

- 1. Open the filling valve (external, not included in the product). Fill the climate system with water.
- 2. Open the vent valve (external, not included in the product).
- 3. When the water that exits the venting valve is not mixed with air, close the valve. After a while the pressure starts to rise.
- 4. Close the filling valve when the correct pressure is obtained.

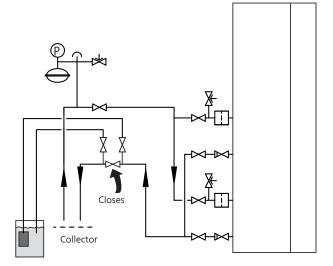
Venting

- 1. Vent F1345 via a vent valve (external, not included in the product) and other climate systems via their respective vent valves.
- 2. Keep topping up and venting until all air has been removed and the pressure is correct.

NOTE

Make sure that the heating medium system contains no air, before start-up. Failure to properly vent the system may result in damage to components.

FILLING AND VENTING THE BRINE SYSTEM


When filling the brine system, mix the water with antifreeze in an open container. The mixture should be protected against freezing down to about -15 -C. The brine is filled by connecting a filling pump.

- 1. Check the brine system for leakage.
- Connect the filling pump and return line on the brine 2. system's service connections as shown in figure.
- 3. Close the shut-off valve between the service connections.
- 4. Open the service connections.
- 5. Start the filling pump.
- 6. Fill and bleed the brine system until clear, air free, liquid enters the return pipe.
- 7. Close the service connections.
- 8. Open the shut-off valve between the service connections.

NOTE

Make sure that the brine system does not contain air before it is started up.. Failure to properly vent the system may result in damage to components.

SYMBOL KEY

Symbol	Meaning
Χ	Shut-off valve
	Safety valve
\ominus	Expansion vessel
P	Pressure gauge
	Particle filter

Start-up and inspection

START GUIDE

NOTE

There must be water in the climate system before the switch is set to "I".

NOTE ∕!∖

With several heat pumps connected, the start guide must first be run in the subordinate heat pumps.

In the heat pumps that are not the main unit, you can only make settings for each heat pump's circulation pumps. Other settings are made and controlled by the main unit.

- 1. Set switch (SF1) on F1345 to position "I".
- 2. Follow the instructions in the display's start guide. If the start guide does not start when you start the F1345, start it manually in menu 5.7.

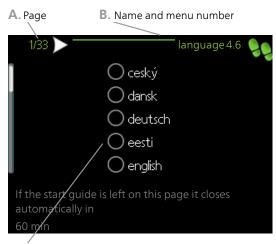
TIP

Refer to the operating manual for a more indepth introduction to the control system in F1345 (operation, menus, etc.).

Commissioning

The first time the installation is started a start guide is started. The start guide instructions state what needs to carried out at the first start together with a run through of the installation's basic settings.

The start guide ensures that the start-up is carried out correctly and, for this reason, cannot be skipped.



Caution

As long as the start guide is active, no function in the installation will start automatically.

The start guide will appear at each restart of the installation, until it is deselected on the last page.

Operation in the start guide

C. Option / setting

A. Page

Here you can see how far you have come in the start guide.

Scroll between the pages of the start guide as follows:

- Turn the control knob until one of the arrows in the top left corner (at the page number) has been marked.
- 2. Press the OK button to skip between the pages in the start guide.

B. Name and menu number

Here, you can see which menu in the control system this page of the start guide is based on. The digits in brackets refer to the menu number in the control system.

If you want to read more about affected menus either read off in the sub-menu or in the operating manual under the chapter "Control - Menus"

If you want to read more about affected menus either consult the help menu or read the user manual.

C. Option / setting

Make settings for the system here.

POST ADJUSTMENT AND VENTING

Pump adjustment, automatic operation

Brine side

To set the correct flow in the brine system, the brine pump must run at the correct speed. F1345 has a brine pump that is controlled automatically in standard mode. Certain functions and accessories may demand that it be run manually, in which case the correct speed must be set.

For optimum operation when several heat pumps are installed in a multi-installation, all heat pumps should have the same compressor size.

This automatic control occurs when the compressor is running and sets the speed of the brine pump so that the optimum temperature difference between the supply and return lines is attained.

Heating medium side

To set the correct flow in the heating medium system, the heating medium pump must run at the correct speed. F1345 has a heating medium pump that can be automatically controlled in standard mode. Certain functions and accessories may require it to run manually and the correct speed must then be set.

This automatic control occurs when the compressor is running and sets the speed of the heating medium pump, for the relevant operating mode, so the optimum temperature difference between the supply and return lines is achieved. During heating operation, the set DOT (dimensioned outdoor temperature) and temperature differential in menu 5.1.14 are used. If necessary, the maximum speed of the circulation pump can be limited in menu 5.1.11.

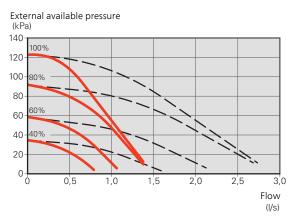
Pump adjustment, manual operation

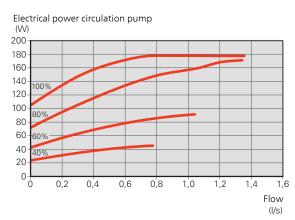
Brine side

F1345 has brine pumps that can be controlled automatically. For manual operation: deactivate "auto" in menu 5.1.9 and then set the speed according to the diagrams below.

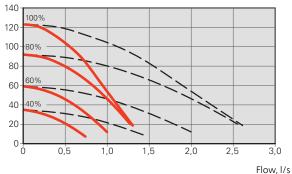
- Caution

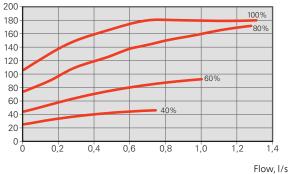
When an accessory for passive cooling is used, the brine pump speed must be set in menu 5.1.9.


Set the pump speed when the system has come into balance (ideally 5 minutes after compressor start).


Adjust the flow so the temperature difference between brine out (BT11) and brine in (BT10) is between 2 - 5 °C. Check these temperatures in menu 3.1 "service info" and adjust the brine pumps' (GP2) speed until the tem-

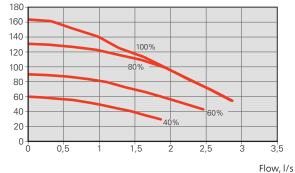
perature difference is obtained. A high difference indicates a low brine flow and a low difference indicates a high brine flow.


F1345 24 kW

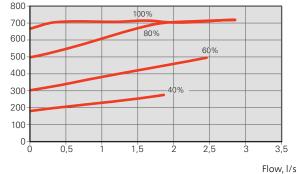


F1345 30 kW

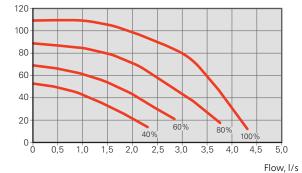
External available pressure (kPa)



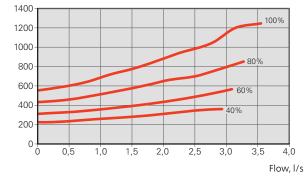
Electrical output per circulation pump (W)



F1345 40 kW



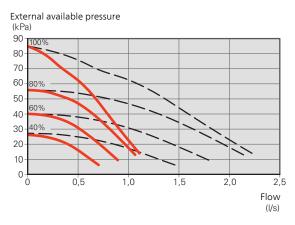
Electrical power, circulation pump (W)

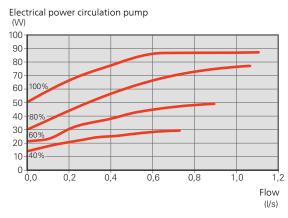


F1345 60 kW

External available pressure (kPa)

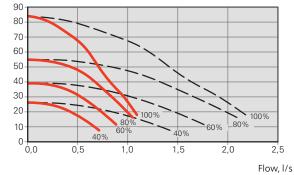
Electrical power, circulation pump (W)

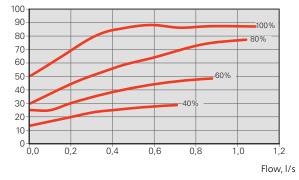



Heating medium side

F1345 has heating medium pumps that can be automatically controlled. For manual operation: deactivate "auto" in menu 5.1.11 and then set the speed according to the diagrams below. The flow must have a suitable temperature difference for the operating case (heating operation: 5 - 10 °C, hot water generation: 5 - 10 °C, pool heating: approx. 15 °C) between controlling supply temperature sensor and return line sensor. Check these temperatures in menu 3.1 "service info" and adjust the heating medium pumps' (GP1) speed until the temperature difference is obftained. A high difference indicates a low heating medium supply and a low difference indicates a high heating medium supply.

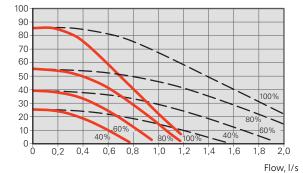
1 circulation pump
 2 circulation pumps


F1345 24 kW

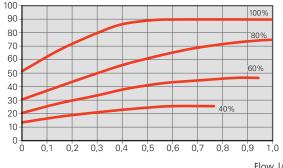


F1345 30 kW

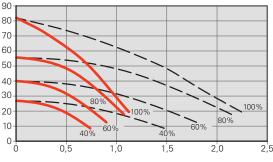
External available pressure (kPa)



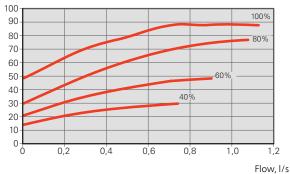
Electrical output per circulation pump (W)



External available pressure (kPa)



Electrical output per circulation pump (W)


Flow, I/s

External available pressure (kPa)

Flow, I/s

Electrical output per circulation pump (W)

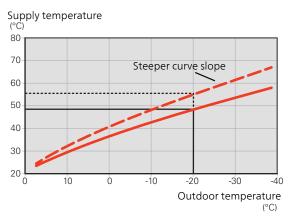
Readjusting, venting, heat medium side

Air is initially released from the hot water and venting may be necessary. If gurgling sounds can be heard from the heat pump or climate system, the entire system requires additional venting. Check the pressure in the pressure expansion vessel (CM1) with the pressure gauge (BP5). If the pressure drops, the system should be replenished.

Readjusting, venting, collector side

Expansion vessel

Check the pressure in the pressure expansion vessel (CM3) with the pressure gauge (BP6). If the pressure drops, the system should be replenished.

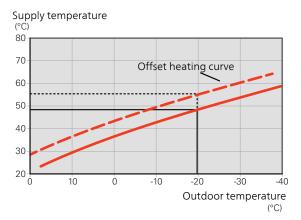


Setting the heating curve

In menu Curve, heating you can view the heating curve for your house. The task of the curve is to give an even indoor temperature, regardless of the outdoor temperature, and thereby energy-efficient operation. Based on this curve, the F1345 determines the temperature of the water to the climate system (the supply temperature) and thus the indoor temperature.

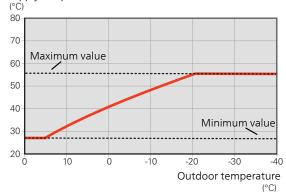
CURVE COEFFICIENT

The slope of the heating curve indicates how many degrees the supply temperature is to be increased/reduced when the outdoor temperature drops/increases. A steeper slope means a higher supply temperature at a certain outdoor temperature.



The optimum curve slope depends on the climate conditions in your location, whether the house has radiators, fan coils or underfloor heating and how well insulated the house is.

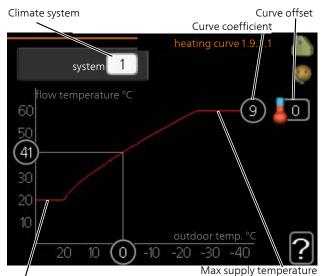
The heating curve is set when the heating installation is installed, but may need adjusting later. Normally, the curve will not need further adjustment.


CURVE OFFSET

An offset of the heating curve means that the supply temperature is changed by the same amount for all outdoor temperatures, e.g. a curve offset of +2 steps increases the supply temperature by 5 °C at all outdoor temperatures.

SUPPLY TEMPERATURE – MAXIMUM AND MINIMUM VALUES

Because the flow line temperature cannot be calculated higher than the set maximum value or lower than the set minimum value the heating curve flattens out at these temperatures. Supply temperature



Caution

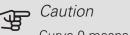
With underfloor heating systems, the maximum supply temperature is normally set between 35 and 45 °C.

Check the max floor temperature with your floor supplier.

ADJUSTMENT OF CURVE

Min supply temperature

- 1. Select the climate system (if more than one) for which the curve is to be changed.
- 2. Select curve slope and curve offset.



Caution

If you need to adjust "min. flow line temp." and/or "max flow line temperature", you do this in other menus.

Settings for "min. flow line temp." in menu 1.9.3.

Settings for "max flow line temperature" in menu 5.1.2.

Curve 0 means that own curve is used. Settings for own curve are made in menu 1.9.7.

TO READ OFF A HEATING CURVE

- 1. Turn the control knob so that the ring on the shaft with the outdoor temperature is marked.
- 2. Press the OK button.
- 3. Follow the grey line up to the curve and out to the left to read off the value for the supply temperature at the selected outdoor temperature.
- 4. You can now select to take read outs for different outdoor temperatures by turning the control knob to the right or left and read off the corresponding flow temperature.
- 5. Press the OK or Back button to exit read off mode.

7 Accessories

Not all accessories are available on all markets.

ACCESSORY CARD AXC 50

An accessory board is required if, for example, a ground water pump or external circulation pump is to be connected to F1345 at the same time as the indication of common alarm is activated.

Part no. 067 193

ACTIVE/PASSIVE COOLING IN 2-PIPE SYSTEM HPAC 45

Combine F1345 with HPAC 45 for passive or active cooling.

Intended for heat pumps with outputs 24 – 60 kW. Part no. 067 446

ACTIVE/PASSIVE COOLING IN 4-PIPE SYSTEM ACS 45

Part no 067 195

AUXILIARY RELAY HR 10

Auxiliary relay HR 10 is used to control external 1 to 3 phase loads such as oil burners, immersion heaters and pumps.

Part no 067 309

BUFFER VESSEL UKV

UKV is an accumulator tank that is suitable for connection to a heat pump or another external heat source, and can have several different applications. It can also be used during external control of the heating system.

UKV 200

UKV 300

Part no. 080 300

Part no. 080 301

UKV 500

Part no. 080 114

COMMUNICATIONS MODULE MODBUS 40

MODBUS 40 enables F1345 to be controlled and monitored using a DUC (computer sub-centre) in the building. Communication is then performed using MODBUS-RTU. Part no 067 144

COMMUNICATIONS MODULE SMS 40

When there is no internet connection, you can use the accessory SMS 40 to control F1345 via SMS.

Part no 067 073

CONNECTION BOX K11

Connection box with thermostat and overheating protection. (When connecting Immersion heater IU)

Part no. 018 893

DOCKING KIT SOLAR 42

Solar 42 means that F1345 (together with VPAS) can be connected to thermal solar heating.

Part no 067 153

DOMESTIC WATER EXCHANGER PLEX

310 - 20	310 - 40
Part no. 075 315	Part no. 075 316
310 - 60	310 - 80
Part no. 075 317	Part no. 075 318
322 - 30	322 - 40
Part no. 075 319	Part no. 075 320
322 - 60	
_	

Part no. 075 321

ENERGY MEASUREMENT KIT EMK 500

This accessory is installed externally and used to measure the amount of energy that is supplied for the pool, hot water, heating and cooling in the building.

Cu pipe Ø28.

Part no. 067 178

EXHAUST AIR MODULE NIBE FLM

NIBE FLM is an exhaust air module designed to combine recovery of mechanical exhaust air with ground source heating.

NIBE FLM	Bracket BAU 40
Part no. 067 011	Part no. 067 666

EXTERNAL ELECTRIC ADDITIONAL HEAT ELK

These accessories may need an accessory board AXC 50 (step controlled additional heat).

ELK 15	ELK 26
15 kW, 3 x 400 V Part no. 069 022	26 kW, 3 x 400 V Part no. 067 074
ELK 42	ELK 213
42 k M 2 x 400 M	7 12 k M 2 x 400 M

42 kW, 3 x 400 V Part no. 067 075 7-13 kW, 3 x 400 V Part no. 069 500

EXTRA SHUNT GROUP ECS 40/ECS 41

This accessory is used when F1345 is installed in houses with two or more different heating systems that require different supply temperatures.

ECS 40 (Max 80 m²) Part no 067 287

ECS 41 (approx. 80-250 m²) Part no 067 288

FILLING VALVE KIT KB 32

Valve kit for filling brine in the collector hose. Includes particle filter and insulation.

KB 32 (max. 30 kW)

Part no 089 971

GAS ACCESSORY

Communications module OPT 10

OPT 10 is used to enable connection and control of gas boiler NIBE GBM 10-15.

Part no. 067 513

HOT WATER CONTROL

VST 11

Reversing valve, cupipe Ø28 (Max recommended power, 17 kW) Part no. 089 152 Reversing valve, cupipe Ø35 (Max recommended power, 40 kW) Part no 089 388

VST 20

HUMIDITY SENSOR HTS 40

This accessory is used to show and regulate humidity and temperatures during both heating and cooling operation. Part no. 067 538

IMMERSION HEATER IU

3 kW Part no. 018 084

Part no. 018 088

 $6 \, kW$

9 kW

Part no. 018 090

LEVEL MONITOR NV 10

Level monitor for extended checks of the brine level. Part no. 089 315

POOL HEATING POOL 40

POOL 40 is used to enable pool heating with F1345. Max. 17 kW. Part no 067 062

ROOM SENSORRTS 40

This accessory is used to obtain a more even indoor temperature.

Part no. 067 065

ROOM UNIT RMU 40

The room unit is an accessory that allows the control and monitoring of F1345 to be carried out in a different part of your home to where it is located.

Part no 067 064

SOLAR PACKAGE NIBE PV

Solar panel package, 3 - 24 kW (10 - 80 panels), which is used to produce your own electricity.

VENTILATION HEAT EXCHANGER ERS

This accessory is used to supply the accommodation with energy that has been recovered from the ventilation air. The unit ventilates the house and heats the supply air as necessary.

ERS 10-400

Part no. 066 115

WATER HEATER/ACCUMULATOR TANK

VPA

Water heater with double-jacketed vessel.VPA 300/200VPA 450/300CopperPart no. 082 023CopperPart no. 082 023CopperPart no. 082 030

Enamel Part no. 082 025 Enamel Part no. 082 032

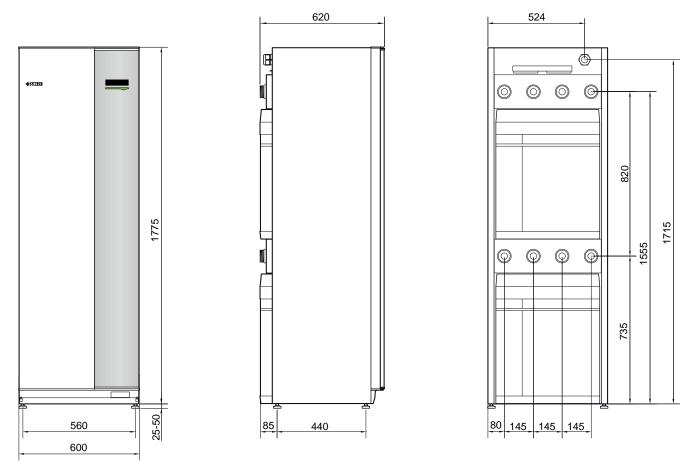
VPAS

Water heater with double-jacketed vessel and solar coil.

VPAS 300/450

Copper Part no. 082 026 Enamel Part no. 082 027

VPB


Water heater without immersion heater with charging coil.VPB 500VPB 750CopperPart no. 081 054CopperPart no. 081 054CopperPart no. 081 052

VPB 1000

Copper Part no. 081 053

8 Technical data

Dimensions and setting-out coordinates

Technical specifications

Model		24	30	40	60
Output data according to EN 14511					
Heating capacity (P _H)	kW	-	-	-	-
0/35			1	1	1
Heating capacity (P _H)	kW	23.00	30.72	39.94	59.22
Supplied power (P _F)	kW	4.94	6.92	8.90	13.72
СОР	-	4.65	4.44	4.49	4.32
0/45					
Heating capacity (P _H)	kW	21.98	29.74	38.90	56.12
Supplied power (P _E)	kW	5.96	8.34	10.61	16.02
COP		3.69	3.57	3.67	3.50
10/35		0.00	0.07	0.07	0.00
Heating capacity (P _H)	kW	30.04	40.08	51.71	78.32
Supplied power (P _F)	kW	5.30	7.24	9.81	15.08
COP			5.53		
	-	5.67	5.53	5.27	5.19
10/45				50.70	71.01
Heating capacity (P _H)	kW	29.28	39.16	50.79	74.21
Supplied power (P _E)	kW	6.34	8.84	11.82	17.60
СОР	-	4.62	4.43	4.30	4.22
Output data according to EN 14825					
P _{designh} , 35 °C / 55 °C	kW	28	35	46	67
SCOP cold climate, 35 °C / 55 °C	-	5.0 / 4.0	4.9/3.8	5.0/3.9	4.7 / 3.8
SCOP average climate, 35 °C / 55 °C	-	4.8/3.8	4.7 / 3.6	4.8/3.8	4.6/3.7
Energy rating, average climate			1	1	
The product's room heating efficiency class 35 °C / 55 °C ¹	-	A+++ / A++	A+++ / A++	A+++ / A++	A+++ / A++
The system's room heating efficiency class 35 °C / 55 °C ²	-	A+++ / A++	A+++/A++	A+++/A++	A+++ / A++
Electrical data				1	
Rated voltage	-		400V 3N	l ~ 50Hz	
Max operating current, heat pump ³	A _{rms}	20.5	25.3	29.5	44.3
Max operating current per compressor	A _{rms}	8.4	11.1	13.1	19.9
Recommended fuse rating	A	25	30	35	50
Starting current	Arms	29	30	42	53
Max permitted impedance at connection point ⁴		23		42	0.4
	ohm W	- 6 - 360	-	- 35 – 730	
Total output, Brine pumps ³			6 - 360		40 - 1,250
Total output, HM pumps	W	5 – 174	5 - 174	5 – 174	5 – 174
Enclosure class	-		IP	21	
Refrigerant circuit					
Type of refrigerant	-	R407C	R407C	R407C	R410A
Volume	kg	2 × 2.0	2 x 2.0	2 x 1.7	2 x 1.7
GWP refrigerant	-	1,774	1,774	1,774	2,088
CO ₂ equivalent	ton	2 x 3.55	2 x 3.55	2 x 3.02	2 x 3.55
Cut-out value pressostat HP	MPa	3.2 (32 bar)	3.2 (32 bar)	3.2 (32 bar)	4.2 (42 bar)
Difference pressostat HP	MPa	-0.7 (-7 bar)	-0.7 (-7 bar)	-0.7 (-7 bar)	-0.7 (-7 bar)
Cut-out value pressostat LP	MPa	0.08 (0.8 bar)	0.08 (0.8 bar)	0.08 (0.8 bar)	0.2 (2 bar)
Difference pressostat LP	MPa	0.07 (0.7 bar)	0.07 (0.7 bar)	0.07 (0.7 bar)	0.07 (0.7 bar)
Cut-out value, pressure transmitter LP	MPa	0.08 (0.8 bar)	0.08 (0.8 bar)	0.08 (0.8 bar)	0.2 (2.0 bar)
Difference, pressure transmitter LP	MPa	0.01 (0.1 bar)	0.01 (0.1 bar)	0.01 (0.1 bar)	0.01 (0.1 bar)
Brine circuit					
Max system pressure brine	MPa	0.6 (6 bar)	0.6 (6 bar)	0.6 (6 bar)	0.6 (6 bar)
Min flow	l/s	0.92	1.23	1.59	2.36
Nominal flow	l/s	1.18	1.62	2.09	3.10
Max external available press at nominal flow ⁵	kPa	92	75	92	78
Min/Max incoming Brine temp	°C		see di	agram	1
Min. outgoing brine temp.	°C	-12	-12	-12	-12
Heating medium circuit	1	<u>II</u>	1	1	1
Max system pressure heating medium	MPa	0.6 (6 bar)	0.6 (6 bar)	0.6 (6 bar)	0.6 (6 bar)
Min flow	l/s	0.37	0.50	0.64	0.92
Nominal flow	l/s	0.54	0.73	0.93	1.34
	., 0	0.01	0.70	0.00	
Max external avail. pressure at nominal flow	kPa	78	72	70	50

Model		24	30	40	60
Noise			I		
Sound power level (L _{WA}) according to EN 12102 at 0/35	dB(A)	47	47	47	47
Sound pressure level (L_{PA}) calculated values according to EN ISO 11203	dB(A)	32	32	32	32
at 0/35 and 1 m range					
Pipe connections		1	,		
Brine diam. CU pipe	-	G5	0 (2" external) /	G40 (1 1/2" inter	nal)
Heating medium diam. CU pipes	-	G5	0 (2" external) /	G40 (1 1/2" inter	nal)
Compressor oil					
Oil type	-		P	ЭЕ	
Volume		2 x 1.9	2 x 1.1	2 x 1.9	2 x 1.9
Dimensions and weight					
Width	mm		6	00	
Depth	mm		63	20	
Height	mm		1,8	300	
Required ceiling height ⁶	mm		1,9	950	
Weight complete heat pump	kg	320	330	345	346
Weight only cooling module	kg	130	135	144	144
Part no. 3x400V ³		065 297	065 298	065 299	065 300
Part no. 3x400V ⁷				065 301	065 302

¹ Scale for the product's efficiency class room heating: A+++ to D.

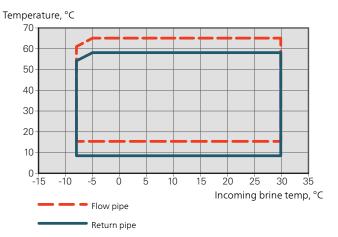
² Scale for the system's efficiency class room heating: A+++ to G. Reported efficiency for the system takes the product's temperature regulator into account.

³ 24 and 30 kW with internal brine pump. 40 and 60 kW with enclosed external brine pump.

⁴ Max permitted impedance in the mains connection point in accordance with EN 61000-3-11. Start currents can cause short voltage dips that may affect other equipment in unfavourable conditions. If the impedance in the mains connection point is higher than that stated, it is probable that interference will occur. If the impedance in the mains connection point is higher than that stated, check with the power supplier before purchasing the equipment.

⁵ This technical specification applies to the enclosed brine pump.

⁶ With feet removed, the height is approx. 1930 mm.


7 40 and 60 kW without enclosed external brine pump.

WORKING RANGE HEAT PUMP, COMPRESSOR OPERATION

The compressor provides a supply temperature up to 65 $^\circ\mathrm{C}.$

30 kW, 40 kW, 60 kW

Energy labelling

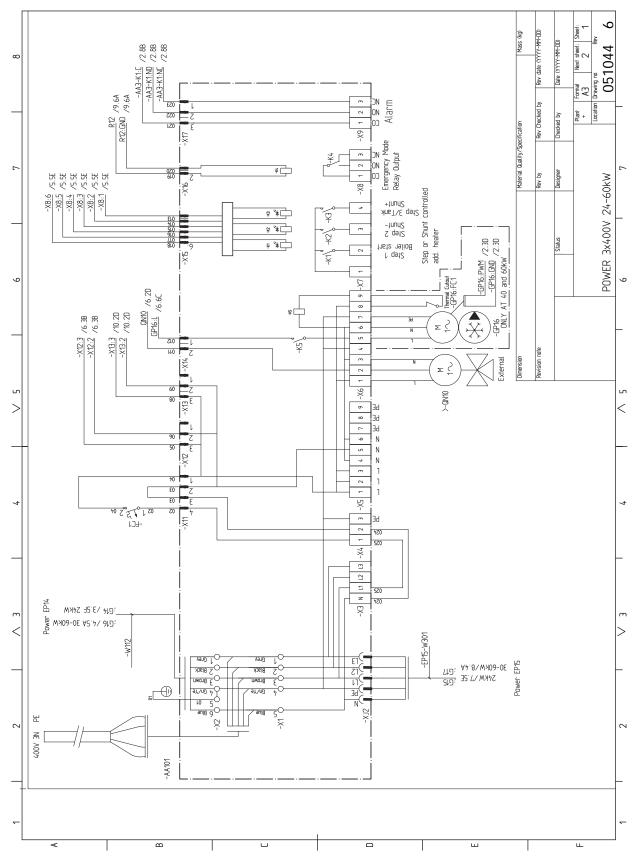
INFORMATION SHEET

Supplier		NIBE							
Model		F1345-24	F1345-30	F1345-40	F1345-60				
Model hot water heater		-	-	-	-				
Temperature application	℃	35 / 55	35 / 55	35 / 55	35 / 55				
Declared load profile for water heating		-	-	-	-				
Seasonal space heating energy efficiency class, average climate		A+++ / A++	A+++ / A++	A+++ / A++	A+++ / A++				
Water heating energy efficiency class, average climate		-	-	-	-				
Rated heat output (P _{desianh}), average climate	kW	28	35	46	67				
Annual energy consumption space heating, average climate	kWh	11,996 / 15,287	15,539 / 19,880	19,996 / 25,093	30,169 / 38,048				
Annual energy consumption water heating, average climate	kWh	-	-	-	-				
Seasonal space heating energy efficiency, average climate	%	185 / 143	178 / 137	182 / 143	176 / 138				
Water heating energy efficiency, average climate	%	-	-	-	-				
Sound power level L _{WA} indoors	dB	47	47	47	47				
Rated heat output (P _{designh}), cold climate	kW	28	35	46	67				
Rated heat output (P _{designh}), warm climate	kW	28	35	46	67				
Annual energy consumption space heating, cold cli- mate	kWh	13,730 / 17,514	17,817 / 22,770	22,939 / 28,857	34,918 / 43,924				
Annual energy consumption water heating, cold cli- mate	kWh	-	-	-	-				
Annual energy consumption space heating, warm climate	kWh	7,823 / 9,904	10,063 / 12,803	12,931 / 16,202	19,396 / 24,446				
Annual energy consumption water heating, warm cli- mate	kWh	-	-	-	-				
Seasonal space heating energy efficiency, cold climate	%	193 / 150	186 / 144	190 / 149	181 / 142				
Water heating energy efficiency, cold climate	%	-	-	-	-				
Seasonal space heating energy efficiency, warm cli- mate	%	183 / 143	178 / 138	182 / 144	177 / 138				
Water heating energy efficiency, warm climate	%	-	-	-	-				
Sound power level L _{WA} outdoors	dB	-	-	-	-				

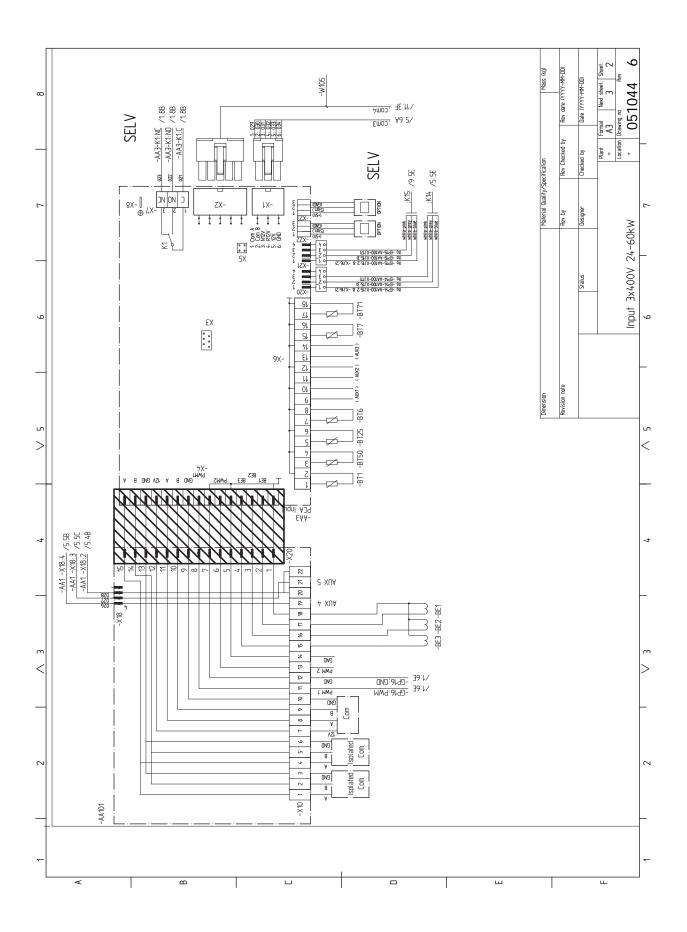
DATA FOR ENERGY EFFICIENCY OF THE PACKAGE

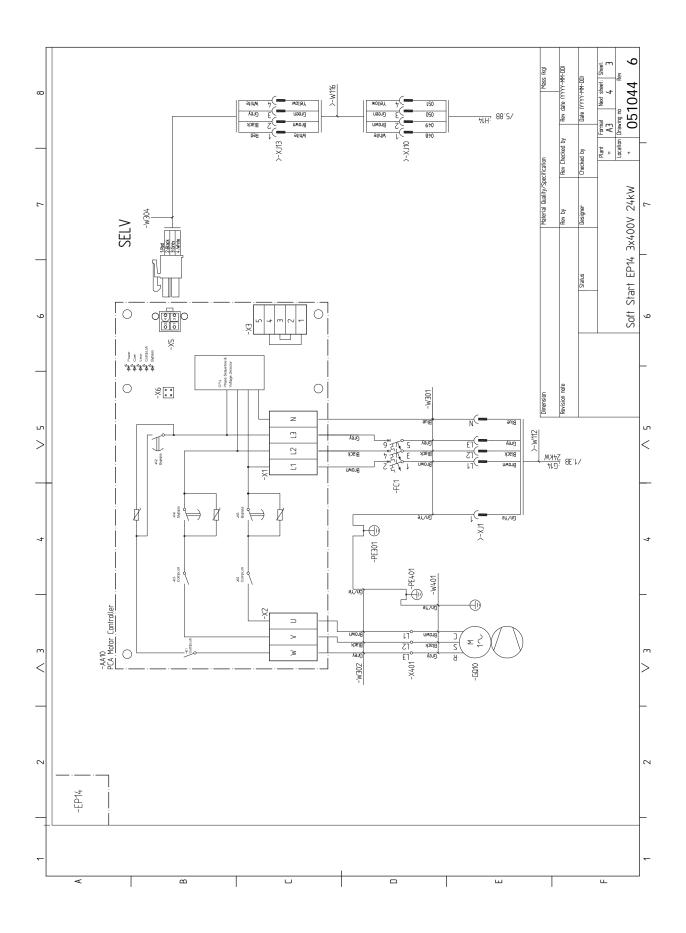
Model		F1345-24	F1345-30	F1345-40	F1345-60
Model hot water heater		-	-	-	-
Temperature application	°C	35 / 55	35 / 55	35 / 55	35 / 55
Controller, class				l	
Controller, contribution to efficiency	%		2	2	
Seasonal space heating energy efficiency of the package, average climate	%	187 / 145	180 / 139	184 / 145	178 / 140
Seasonal space heating energy efficiency class of the package, average climate		A+++ / A++	A+++ / A++	A+++ / A++	A+++ / A++
Seasonal space heating energy efficiency of the package, cold climate	%	195 / 152	188 / 146	192 / 151	183 / 144
Seasonal space heating energy efficiency of the package, warm climate	%	185 / 145	180 / 140	184 / 146	179 / 140

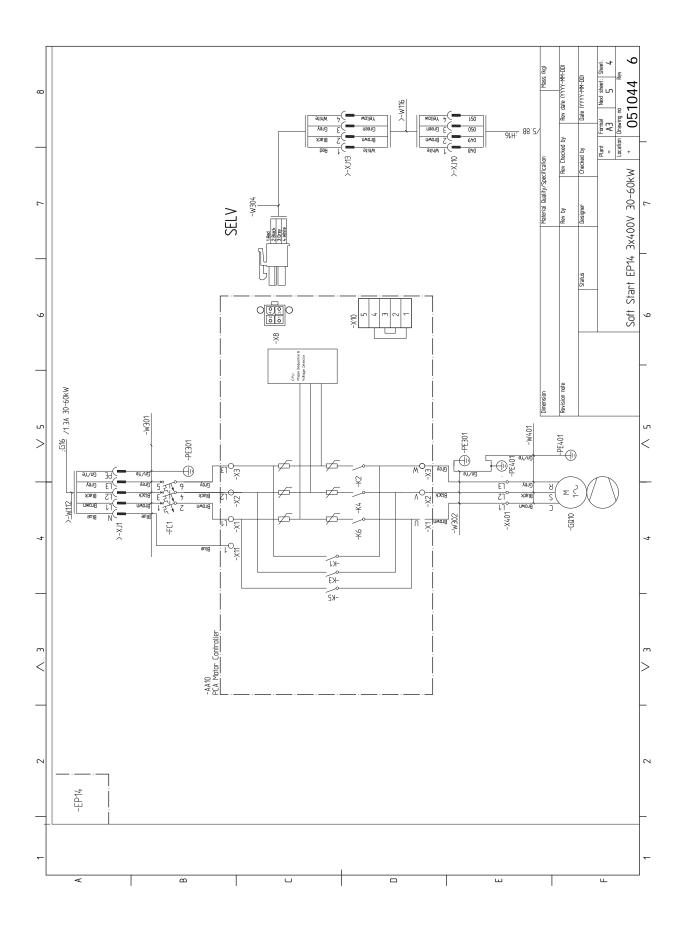
The reported efficiency of the package also takes the controller into account. If an external supplementary boiler or solar heating is added to the package, the overall efficiency of the package should be recalculated.

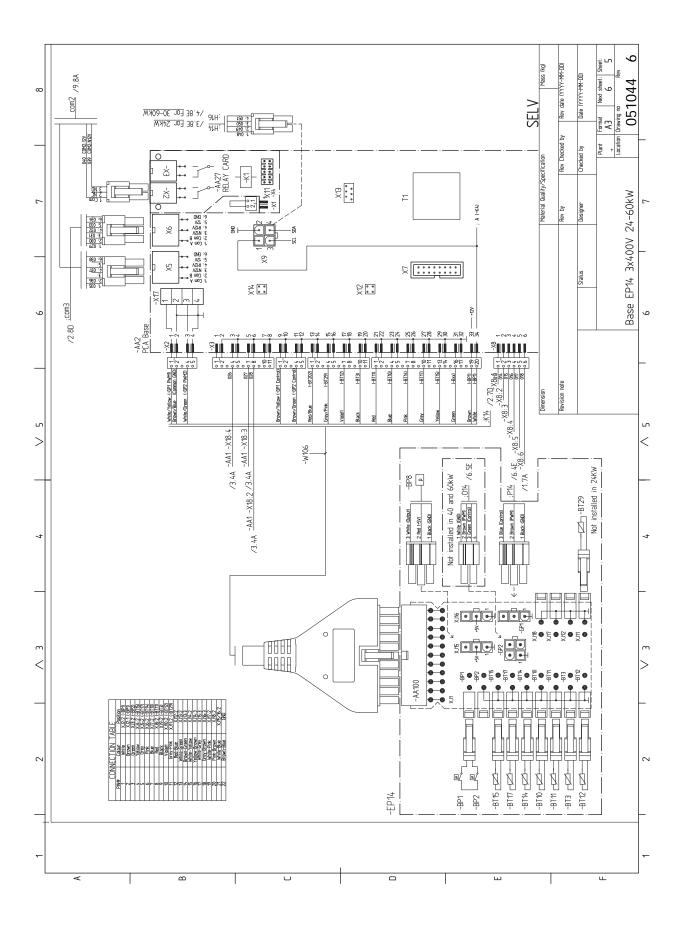

TECHNICAL DOCUMENTATION

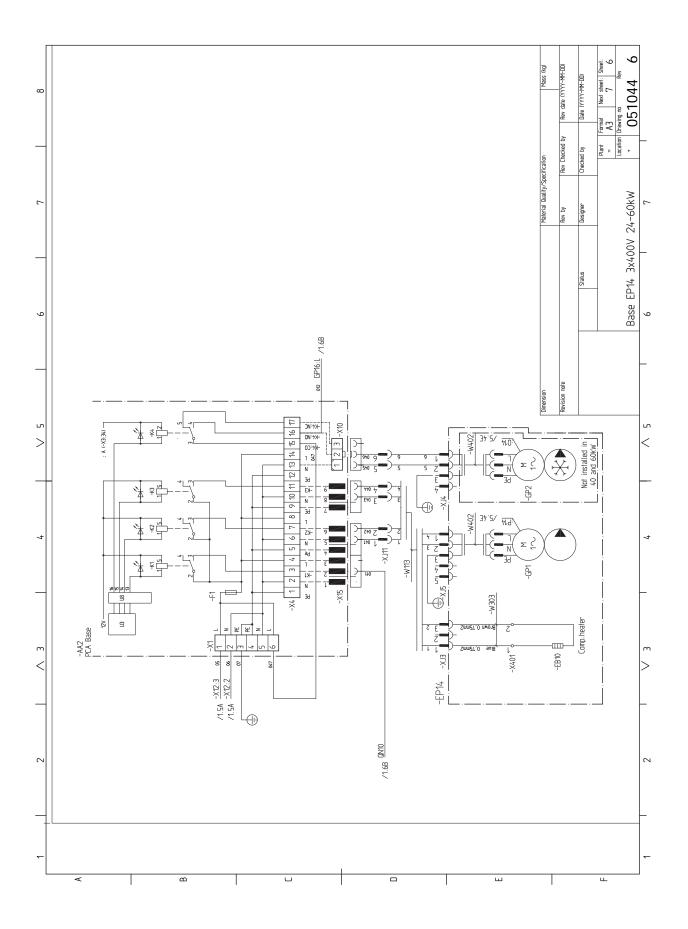
Model		F1345-24										
Type of heat pump		Air-w	ater									
		Exhaust-water										
		Exnaust-water										
		=										
		U Wate	er-water									
Low-temperature heat pump		Yes	🛛 No									
Integrated immersion heater for additional h	eat	Yes	🛛 No									
Heat pump combination heater		Yes										
Climate		X Avera		Cold 🔲 Warm								
Tananaratura application												
Temperature application			age (55 °C)) Low (35 °C)								
Applied standards		EN-1482	-									
Rated heat output	Prated	28,0	kW	Seasonal space heating energy efficiency	η _s	143	%					
Declared capacity for space heating at part I	oad and at outd	oor tempe	rature Tj	Declared coefficient of performance for space hea temperature Tj	ting at part	load and a	at outdool					
Tj = -7 °C	Pdh	22.2	kW	Tj = -7 °C	COPd	3.27	-					
Tj = +2 °C	Pdh	22.8	kW	Tj = +2 °C	COPd	3.83	-					
Tj = +7 °C	Pdh	11.7	kW	Tj = +7 °C	COPd	4.31	-					
Tj = +12 °C	Pdh	11.8	kW	Tj = +12 °C	COPd	4.58	-					
Tj = biv	Pdh	22.4	kW	Tj = biv	COPd	3.45	-					
Tj = TOL	Pdh	22.0	kW	Tj = TOL	COPd	3.10	-					
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-					
Bivalent temperature	T _{biv}	-4.8	°C	Min. outdoor air temperature	TOL	-10.0	°C					
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-					
Degradation coefficient	Cdh	0.99	-	Max supply temperature	WTOL	65.0	°C					
Power consumption in modes other than ac	tive mode			Additional heat	I							
Off mode	P _{OFF}	0.002	kW	Rated heat output	Psup	6.0	kW					
Thermostat-off mode	PTO	0.030	kW	1			1					
Standby mode	P _{SB}	0.007	kW	Type of energy input		Electric						
Crankcase heater mode	P _{CK}	0.070	kW									
Other items		1		1								
Capacity control		Variable		Rated airflow (air-water)			m³/h					
Sound power level, indoors/outdoors	L _{WA}	47 / -	dB	Nominal heating medium flow		2.37	m³/h					
Annual energy consumption	Q _{HE}	15,287	kWh	Brine flow brine-water or water-water heat pumps		4.46	m³/h					
Contact information	NIBE En	ergy Syste	ms – Box	14 – Hannabadsvägen 5 – 285 21 Markaryd – Swed	den							

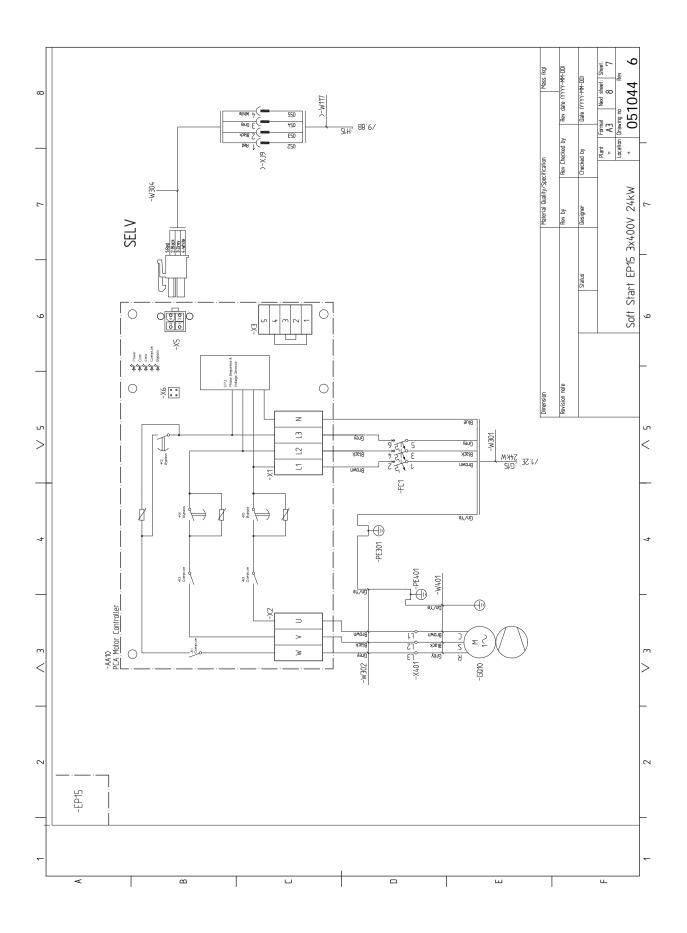

Model		F1345-30								
Type of heat pump		Air-w	ater							
			ust-water							
			-water							
		Wate	r-water							
Low-temperature heat pump		Yes	🛛 No							
Integrated immersion heater for additional h	eat	Yes	🛛 No							
Heat pump combination heater		U Yes	🛛 No							
Climate		X Avera		Cold 🔲 Warm						
Temperature application										
		EN-1482	age (55 °C)	Low (35 °C)						
Applied standards	Destad	35		Constant of the start of the st		107	%			
Rated heat output	Prated		kW	Seasonal space heating energy efficiency	η _s	137				
Declared capacity for space heating at part l	oad and at outd	oor tempe	rature Ij	Declared coefficient of performance for space hea temperature Tj	ting at part	ioad and a	it outdoor			
Tj = -7 °C	Pdh	29.5	kW	Tj = -7 °C	COPd	3.15	-			
Tj = +2 °C	Pdh	30.2	kW	Tj = +2 °C	COPd	3.64	-			
Tj = +7 °C	Pdh	15.3	kW	Tj = +7 °C	COPd	4.09	-			
Tj = +12 °C	Pdh	15.4	kW	Tj = +12 °C	COPd	4.40	-			
Tj = biv	Pdh	29.6	kW	Tj = biv	COPd	3.23	-			
Tj = TOL	Pdh	29.3	kW	Tj = TOL	COPd	2.99	-			
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-			
Bivalent temperature	T _{biv}	-6.0	°C	Min. outdoor air temperature	TOL	-10.0	°C			
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-			
Degradation coefficient	Cdh	0.99	-	Max supply temperature	WTOL	65.0	°C			
		1								
Power consumption in modes other than ac	tive mode			Additional heat						
Off mode	P _{OFF}	0.002	kW	Rated heat output	Psup	5.7	kW			
Thermostat-off mode	P _{TO}	0.040	kW							
Standby mode	P _{SB}	0.007	kW	Type of energy input		Electric				
Crankcase heater mode	Рск	0.070	kW							
				·						
Other items										
Capacity control		Variable		Rated airflow (air-water)			m³/h			
Sound power level, indoors/outdoors	L _{WA}	47 / -	dB	Nominal heating medium flow		3.15	m³/h			
Annual energy consumption	Q _{HE}	19,880	kWh	Brine flow brine-water or water-water heat pumps		5.83	m³/h			
Contact information	NIBE En	ergy Syste	ms – Box	14 – Hannabadsvägen 5 – 285 21 Markaryd – Swed	len					

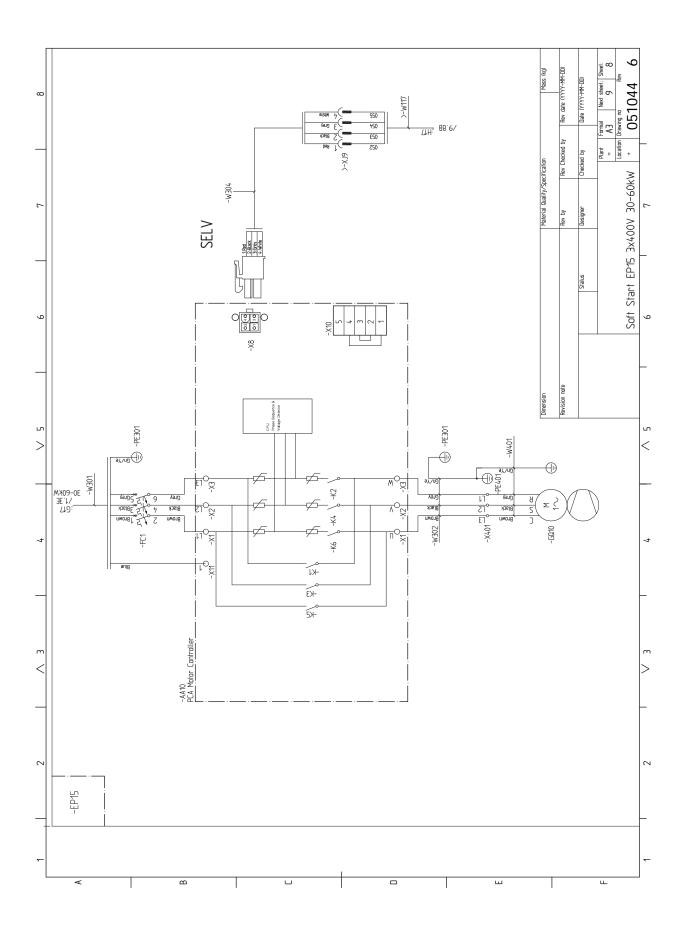

Model		F1345-40								
Type of heat pump		Air-w	ater							
		Exha	ust-water							
			-water							
		VVate	er-water							
Low-temperature heat pump		Yes	🗙 No							
Integrated immersion heater for additional heat		Yes	🛛 No							
Heat pump combination heater		☐ Yes	X No							
Climate		X Avera	-	Cold 🔲 Warm						
Temperature application										
			age (55 °C) Low (35 °C)						
Applied standards		EN-1482	-							
Rated heat output	Prated	46	kW	Seasonal space heating energy efficiency	η _s	143	%			
Declared capacity for space heating at part load	and at outo	loor tempe	erature Tj	Declared coefficient of performance for space hea temperature Tj	ting at part	load and a	ıt outdoor			
Tj = -7 °C	Pdh	38.2	kW	Tj = -7 °C	COPd	3.33	-			
Tj = +2 °C	Pdh	39.1	kW	Tj = +2 °C	COPd	3.79	-			
Tj = +7 °C	Pdh	19.9	kW	Tj = +7 °C	COPd	4.21	-			
Tj = +12 °C	Pdh	20.1	kW	Tj = +12 °C	COPd	4.51	-			
Tj = biv	Pdh	38.4	kW	Tj = biv	COPd	3.41	-			
Tj = TOL	Pdh	37.8	kW	Tj = TOL	COPd	3.19	-			
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-			
Bivalent temperature	T _{biv}	-5.7	°C	Min. outdoor air temperature	TOL	-10.0	°C			
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-			
Degradation coefficient	Cdh	0.99	-	Max supply temperature	WTOL	65.0	°C			
Power consumption in modes other than active	mode			Additional heat						
Off mode	P _{OFF}	0.002	kW	Rated heat output	Psup	8.2	kW			
Thermostat-off mode	P _{TO}	0.050	kW							
Standby mode	P _{SB}	0.007	kW	Type of energy input		Electric				
Crankcase heater mode	P _{CK}	0.080	kW							
Other items										
Capacity control		Variable		Rated airflow (air-water)			m³/h			
Sound power level, indoors/outdoors	L _{WA}	47/-	dB	Nominal heating medium flow		4.07	m³/h			
Annual energy consumption	Q _{HE}	25,093	kWh	Brine flow brine-water or water-water heat pumps		7.77	m ³ /h			
Contact information	NIBE En	ergy Syste	ems – Box	14 – Hannabadsvägen 5 – 285 21 Markaryd – Swed	len					

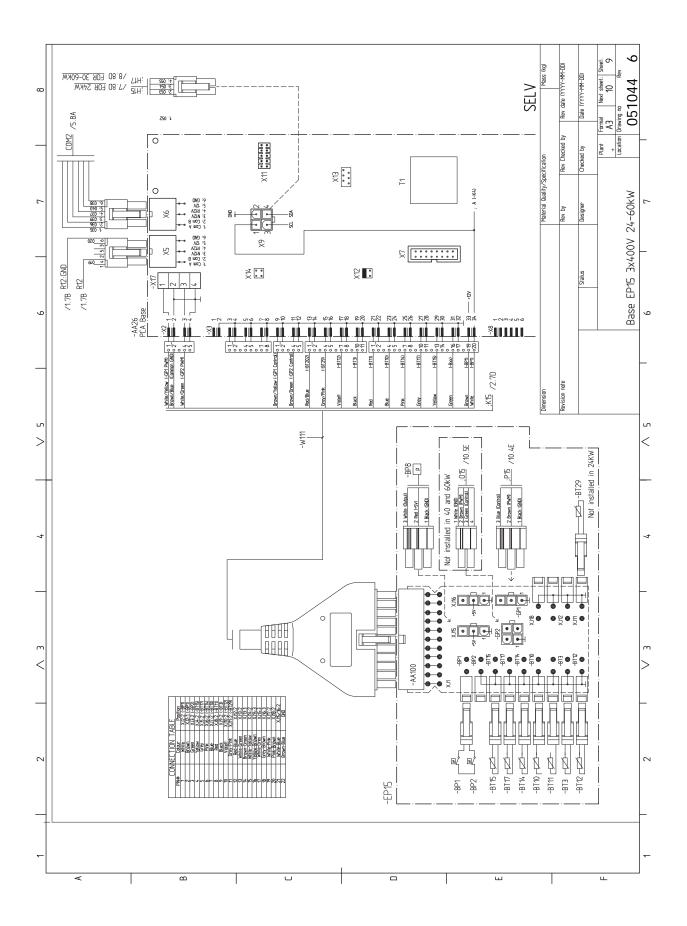

Model		F1345-60								
Type of heat pump		🔲 Air-w	ater							
		Exha	ust-water							
		Brine	-water							
			r-water							
Low-temperature heat pump										
		Yes								
Integrated immersion heater for additional he	at	L Yes	🛛 No							
Heat pump combination heater		Yes	🛛 No							
Climate		X Avera	age	Cold Warm						
Temperature application			age (55 °C) 🔲 Low (35 °C)						
Applied standards		EN-1482								
Rated heat output	Prated	67	kW	Seasonal space heating energy efficiency	ης	138	%			
Declared capacity for space heating at part lo	ad and at outo	loor tempe	rature Tj	Declared coefficient of performance for space hea		load and a	it outdoor			
T: 700		540		temperature Tj	0001	0.17				
Tj = -7 °C	Pdh	54.8	kW	Tj = -7 °C	COPd	3.17 3.62	-			
Tj = +2 °C Ti = +7 °C	Pdh	56.6 29.2	kW	$T_{j} = +2 °C$ $T_{j} = +7 °C$	COPd COPd	3.62 4.06	-			
Ti = +12 °C	Pdh Pdh	29.2	kW kW	IJ = +7 °C Ti = +12 °C	COPd	4.06	-			
$T_{i} = b_{i}$	Pdh	55.2	kW	$T_{j} = +T_{2} C$	COPd	3.26	-			
Ti = TOL	Pdh	54.1	kW	Ti = TOL	COPd	3.03				
$T_j = -15 \text{ °C} \text{ (if TOL } < -20 \text{ °C)}$	Pdh	01.1	kW	Tj = -15 °C (if TOL < -20 °C)	COPd	0.00	-			
Bivalent temperature	T _{biv}	-5.4	°C	Min. outdoor air temperature	TOL	-10.0	°C			
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-			
Degradation coefficient	Cdh	0.99	-	Max supply temperature	WTOL	65.0	°C			
				Additional heat						
Power consumption in modes other than act Off mode		0.002	kW	Rated heat output	Psup	12.9	kW			
Thermostat-off mode	P _{OFF}	0.002	kW		FSup	12.9	KVV			
Standby mode	P _{TO}	0.000	kW	Type of energy input		Electric				
Crankcase heater mode	P _{SB}	0.007	kW			Electric				
	P _{CK}	0.080	KVV							
Other items										
Capacity control		Variable		Rated airflow (air-water)			m³/h			
Sound power level, indoors/outdoors	L _{WA}	47 / -	dB	Nominal heating medium flow		5.83	m³/h			
Annual energy consumption	Q _{HE}	38,048	kWh	Brine flow brine-water or water-water heat pumps		10.87	m³/h			
Contact information	NIBE En	ergy Syste	ms – Box	14 – Hannabadsvägen 5 – 285 21 Markaryd – Swed	len					

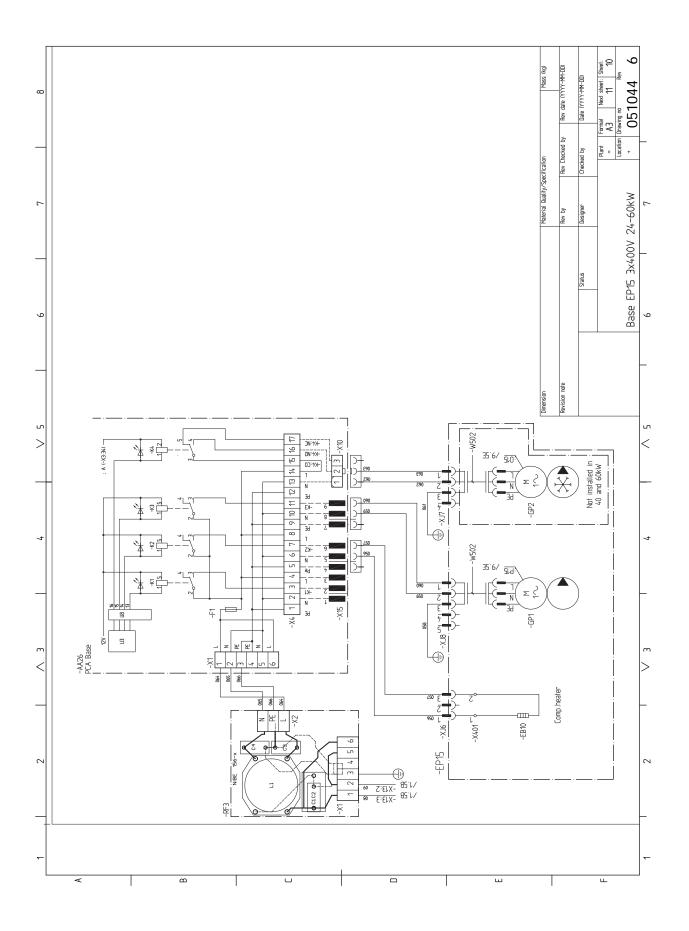


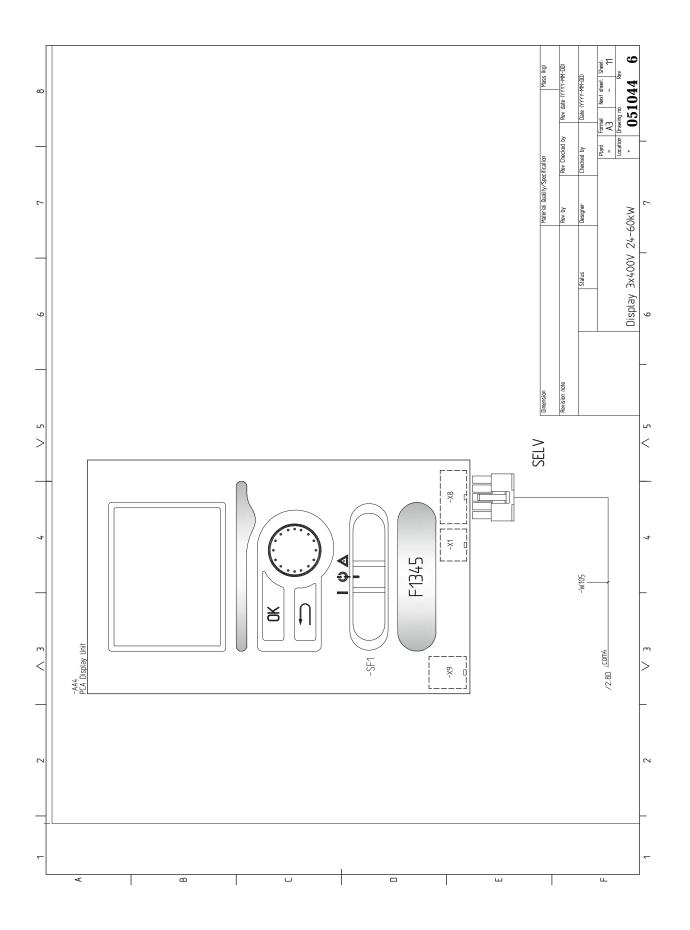

Electrical circuit diagram











Item register

Α

Accessories, 42 Assembly, 8

в

Brine side, 18

С

Cable lock, 24 Cold and hot water Connecting the hot water heater, 20 Commissioning and adjusting, 35 Filling and venting, 35 Post adjustment and bleeding, 37 Preparations, 35 Start guide, 36 Connecting accessories, 34 Connecting current sensors, 27 Connecting external brine pump (60 kW only), 25 Connecting external operating voltage for the control system, 25 Connecting the climate system, 20 Connecting the hot water heater, 20 Connections, 24 Controlling ground water pump, 33 Cooling mode indication, 33 Cooling section, 14

D

Delivery and handling, 8 Assembly, 8 Installation area, 9 Supplied components, 9 Transport, 8 Dimensions and pipe connections, 17 Dimensions and setting-out coordinates, 45 Docking alternatives, 21

Е

Electrical connections, 23 Cable lock, 24 Connecting accessories, 34 Connecting external brine pump (60 kW only), 25 Connecting external operating voltage for the control system, 25 Connections, 24 External connection options (AUX), 31 General, 23 Load monitor, 27 Master/Slave, 26

Miniature circuit-breaker, 23 Motor cut-out, 23 NIBE Uplink, 31 Optional connections, 26 Outdoor sensor, 25 Power connection, 24 Relay output for emergency mode, 30 Reversing valves, 31 Room sensor, 28 Shunt controlled additional heat, 29-30 Step controlled additional heat, 29 Temperature sensor, external flow line, 26 Temperature sensor, hot water charging, 25 Energy labelling Data for energy efficiency of the package, 48 Information sheet, 48 Technical documentation, 49 External connection options Possible selection for AUX inputs, 32 Possible selections for AUX output, 33 Temperature sensor, hot water top, 26 External connection options (AUX), 31 Control of ground water pump, 33 Cooling mode indication, 33 Extra circulation pump, 33 Hot water circulation, 33 Optional selection for AUX output (potential-free variable relay), 33 Extra circulation pump, 33

F

Filling and venting, 35
Filling and venting the brine system, 35
Filling and venting the climate system, 35
Symbol key, 36
Filling and venting the brine system, 35
Filling and venting the climate system, 35

Н

Heating medium side, 20 Connecting the climate system, 20 Hot water circulation, 33

.

Important information, 4 Recovery, 6 Safety information, 4 Inspection of the installation, 7 Installation area, 9

L

Load monitor, 27

Μ

Marking, 4 Master/Slave, 26 Miniature circuit-breaker, 23 Motor cut-out, 23 Resetting, 24

Ν

NIBE Uplink, 31

0

Optional connections, 26 Outdoor sensor, 25

Ρ

Pipe connections, 16 Brine side, 18 Cold and hot water Connecting the hot water heater, 20 Dimensions and pipe connections, 17 Docking alternatives, 21 General, 16 Heating medium side, 20 Pipe dimensions, 17 Symbol key, 16 System diagram, 16 Pipe dimensions, 17 Possible selection for AUX inputs, 32 Possible selection for AUX output (potential free variable relay), 33 Possible selections for AUX output, 33 Post adjustment and bleeding, 37 Pump adjustment, automatic operation, 37 Pump adjustment, manual operation, 37 Pump capacity diagram, brine side, manual operation, 37 Readjusting, venting, heat medium side, 40 Power connection, 24 Preparations, 35 Pump adjustment, automatic operation, 37 Brine side, 37 Heating medium side, 37 Pump adjustment, manual operation, 37 Heating medium side, 38 Pump capacity diagram, brine side, manual operation, 37

R

Readjusting, venting, heat medium side, 40 Relay output for emergency mode, 30 Reversing valves, 31 Room sensor, 28

S

Safety information, 4 Inspection of the installation, 7 Marking, 4 Safety precautions, 5 Symbols, 4 Safety precautions, 5 Shunt controlled additional heat, 29–30 Start guide, 36 Step controlled additional heat, 29 Supplied components, 9 Symbol key, 16, 36 Symbols, 4 System diagram, 16

т

Technical data, 45 Dimensions and setting-out coordinates, 45 Electrical wiring diagram, 3x400 V 24 kWElectrical wiring diagram, 3x400 V 28 kW, 53 Technical Data, 46 Technical Data, 46 Working range heat pump, 47 Temperature sensor, external flow line, 26 Temperature sensor, hot water charging, 25 Temperature sensor, hot water top, 26 The heat pump design, 11 Component list cooling section, 14 Component location cooling section, 14 Component locations, 11 List of components, 11 Transport, 8

W

Working range heat pump, 47

Contact information

AUSTRIA

KNV Energietechnik GmbH Gahberggasse 11, 4861 Schörfling Tel: +43 (0)7662 8963-0 mail@knv.at knv.at

FINLAND

NIBE Energy Systems Oy Juurakkotie 3, 01510 Vantaa Tel: +358 (0)9 274 6970 info@nibe.fi nibe.fi

GREAT BRITAIN

NIBE Energy Systems Ltd 3C Broom Business Park, Bridge Way, S41 9QG Chesterfield Tel: +44 (0)845 095 1200 info@nibe.co.uk nibe.co.uk

POLAND

NIBE-BIAWAR Sp. z o.o. Al. Jana Pawla II 57, 15-703 Bialystok bld. 8, Yuliusa Fuchika str. Tel: +48 (0)85 66 28 490 biawar.com.pl

SWITZERLAND

NIBE Wärmetechnik c/o ait Schweiz AG Industriepark, CH-6246 Altishofen Tel. +41 (0)58 252 21 00 info@nibe.ch nibe.ch

CZECH REPUBLIC

Družstevní závody Dražice - strojírna Vølund Varmeteknik A/S s.r.o. Dražice 69, 29471 Benátky n. Jiz. Tel: +420 326 373 801 nibe@nibe.cz nibe.cz

FRANCE

NIBE Energy Systems France SAS Zone industrielle RD 28 Rue du Pou du Ciel, 01600 Reyrieux Tel: +49 (0)5141 75 46 -0 Tél: 04 74 00 92 92 info@nibe.fr nibe.fr

NETHERLANDS

RUSSIA

NIBE Energietechniek B.V. Energieweg 31, 4906 CG Oosterhout Brobekkveien 80, 0582 Oslo Tel: +31 (0)168 47 77 22 info@nibenl.nl nibenl.nl

EVAN 603024 Nizhny Novgorod Tel: +7 831 419 57 06 kuzmin@evan.ru nibe-evan.ru

DENMARK

Industrivej Nord 7B, 7400 Herning Tel: +45 97 17 20 33 info@volundvt.dk volundvt.dk

GERMANY

NIBE Systemtechnik GmbH Am Reiherpfahl 3, 29223 Celle info@nibe.de nibe.de

NORWAY

ABK-Qviller AS Tel: (+47) 23 17 05 20 post@abkqviller.no nibe.no

SWEDEN

NIBE Energy Systems Box 14 Hannabadsvägen 5, 285 21 Markaryd Tel: +46 (0)433-27 3000 info@nibe.se nibe.se

For countries not mentioned in this list, contact NIBE Sweden or check nibe.eu for more information.

NIBE Energy Systems Hannabadsvägen 5 Box 14 SE-285 21 Markaryd info@nibe.se nibe.eu

This manual is a publication from NIBE Energy Systems. All product illustrations, facts and data are based on the available information at the time of the publication's approval. NIBE Energy Systems makes reservations for any factual or printing errors in this manual.

©2020 NIBE ENERGY SYSTEMS